
Design of a Telescope Control System Interface
T. Hudson

Computer Science Department
Sam Houston State University

stdtgh13@shsu.edu

ABSTRACT
 A telescope control system interface provides a means of
communication between an astronomer, or telescope operator,
and a telescope. This communication loop has historically been
unfriendly to the average user, often relying upon text-based
screens or very basic graphical user interfaces. In this paper, we
present a new standard for the telescope control system interface
by utilizing an advanced graphical technology. Specifically, we
intend to code an application in C++ that employs the OpenGL
API. This allows us to present information in a manner that is
concise, flexible, and easy to learn.

1. INTRODUCTION
 I and my mentor, Dr. James Fowler, decided to attempt this
project together, with the hopes that we might harness the power
of computer graphics and apply it to a field of software in dire
need. The explosion of computer graphics technology within the
last fifteen years has revolutionized many industries. Computer
aided drafting has become an integral part the engineering
industry and computer animation has become the new love of the
movie industry. The military makes use of realistic computer
simulations while hospitals use three-dimensional imaging to
analyze a patient. With this paper, we intend to show how
computer graphics technology will revolutionize the modern
telescope control system interface.

 With graphics technology, we can create a visually pleasing
system that accomplishes several goals: An interface should be
extremely intuitive, so as to minimize the amount of training time
needed. A well-designed GUI should require little to no
instruction prior to operation. It should also make an efficient use
of visual space on the monitor, and cut down the number of total
monitors needed for telescope operation. It should be easily
customizable for the various types of users. It should be as self-
monitoring as possible, requiring the user’s attention only when
absolutely necessary. It should minimize the amount of user error
by requiring as little input as possible.

 To make all of these goals attainable, we decided to use a
graphical standard known as OpenGL. This API allows us to
achieve our goals with graphical operations that would otherwise
be very difficult to implement. An added benefit to using
OpenGL is hardware support. Most of today’s computers have
dedicated GPUs that support at least a portion of the OpenGL API
in hardware. This allows for added graphical effects without a
significant burden being placed on the primary CPU.

2. BACKGROUND
 In this section, we intend to give some background about our
current telescope control system, and the tools we intend to use.

2.1 Current Telescope Control System
 The telescope control system we used as a model for a system
that needed improvement was at the Hobby-Eberly Telescope
(HET) at McDonald Observatory in the Davis Mountains of West
Texas. The need for improvement derives from the fact that the
current TCS interface was borrowed from that of another
telescope. It was not designed with the HET in mind. The main
window contains mostly text, the majority of which is not needed.
Dr. Jim Fowler suggested a graphical interface that did not
include unneeded information.

 To accomplish this, we decided that OpenGL was the best
choice. Introduced in 1992 by Silicon Graphics Incorporated, it is
the API of choice for programmers who want to code graphically
intense applications. It is a mature API that is supported by
multiple platforms with multiple languages. We also decided to
use C++ because it is extremely portable and a language we are
both comfortable with.

3. DESIGN
 In this section, we will discuss the design issues of our
graphical telescope control system interface.

3.1 Graphical Features
 In order to achieve our design goals, we utilized a variety of
graphical features readily available in OpenGL.

3.1.1 Three-Dimensional Representation
 OpenGL has both 2D and 3D applications. The latter,
however, is arguably the prime focus of the API. By allowing the
programmer to easily construct geometric primitives in memory,
OpenGL facilitates the assembly of entire 3D environments.
OpenGL then handles the math associated with transforming the
3D image onto a 2D screen. This would allow any telescope
control system to contain a 3D model of the dome and telescope
structure. Or perhaps the astronomer would prefer some sort of
3D finding chart. Even the core of the interface could be
represented in 3D if desired. In any case, 3D representation often
allows for quick visual information retrieval. For example:
Instead of finding the dome shutter status in a list of numbers, it is
much easier to look at a picture. Not only would you instantly
know the status of the shutter, but also the dome’s orientation.

3.1.2 Rotatable and Scalable Text
 While many GUIs may boast text than can be rotated and
scaled, they do not do so with the precision and ease of OpenGL.
By representing text with geometry, OpenGL can scale and rotate
text at infinitely precise increments. This can in turn, make a
telescope control system interface infinitely customizable.

3.1.3 Pop-ups and Mouse-overs
 This feature is not specific to OpenGL, but plays an important
role in the efficiency of the GUI. By hiding text information until
it is needed, the overall size of the GUI can be reduced. Mouse-
overs are important because you can obtain additional information
about any object on the screen by simply placing the cursor over
the object. Pop-ups can be utilized to warn the telescope operator
of errors or other immediately pertinent information. This negates
the need for a dedicated error message space.

3.1.4 Alpha Channel Blending
 For every visual element of an OpenGL program, color
information is stored in four discrete channels. These channels
are referred to by the acronym RGBA (Red, Green, Blue, and
Alpha). The first three channels determine the overall color of the
element, while the alpha channel determines the opacity of the
element. An object drawn on the screen at only half opacity
would reveal any objects drawn below it. This can effectively
allow the simultaneous display of two visual elements that happen
to occupy the same space.

Figure 1 - A semi-opaque window achieved through alpha
blending

This could be applied to messages or windows so that they are
drawn over information on the screen without completely
obscuring it.

3.2 Modularity
 A major goal of ours was to make a telescope control system
interface that could easily be changed to suit a particular
observatory and even particular users. By containing each piece
of information in a module, and allowing the configuration of
each individual module, we can produce an extremely flexible
GUI. OpenGL allows for “subwindows” within windows that can
be resized and reshaped. Within these subwindows, we can place
any kind of information. For example: In one module, we might
put temperature information. The text size and colors within that
module could be arranged in any fashion. Then the module itself
could be dragged to any desired position on the screen. It could
be resized to a very small box, so that it did not take much space,
or it could be expanded to fill the entire screen. In this manner,
any number of modules could be added or removed from the TCS,
making it easy to upgrade in the future. For our telescope control
system interface, we added a temperature module, a text module,
a history log module, a dome status module, a radar map module,
and a tracker module. Given that our telescope control system
interface is very simple, it does not include modules for
calibration, scheduling, guidance, data information, or

maintenance. All of these functions are already managed by other
programs at the HET, however they would not bee too difficult to
add. After arranging modules in a suitable manner, the
arrangement can be saved, so as to personalize the TCS for any
number of users.

3.3 Implementation
 In this section, we discuss the way our telescope control
system interface was implemented.

3.3.1 Planning
 Dr. James Fowler made the bulk of the decisions concerning
the design of the interface. He suggested a circular design to
correspond with the degree of motion of the telescope. We also
incorporated many elements from the current TCS interface, but
attempted to streamline them in the process.

3.3.2 Interviewing
 To ensure satisfaction by our end-users, the telescope
operators, we conducted many interviews. We queried each
operator about the feasibility of various design elements. We also
obtained many new design elements from the operators
themselves. We were also made aware of the various presentation
needs of each operator.

3.3.3 Programming
 In order to take advantage of OpenGL’s capabilities without
worrying about the intricacies of window-system dependent
commands, we employed the help of GLUT, an OpenGL Utility
Toolkit written by Mark Kilgard. It allows us to start an OpenGL
capable window without regard to a specific operating system.
We constructed the bulk of the program with C++ and OpenGL,
although we also made use of system calls to a PERL script made
to obtain POSS II images from the web. Over the 10-week
period, an interface gradually evolved that included most of the
aforementioned design elements. Though not fully operational, it
was a sufficient mockup to determine the effectiveness of such an
interface.

4. CONCLUSION AND FUTURE WORK
 Within the given time constraints, we were unable to
implement all intended features of the interface or implement
connectivity with the TCS server. In the event that we were given
more time to complete our project, we would like to implement
more advanced features of OpenGL, such as texture-mapping and
more 3D features.

 We did a few follow-up interviews with telescope operators to
get their reaction to the new interface. We were pleasantly
surprised by the response we received. The graphical features and
practicality of our new interface were very well liked.

 We believe that we have uncovered the mere tip of the iceberg
of what is possible, and we are excited to see what the future has
in store for the modern telescope control system interface.

