Here I plot the bias signal computed from a CCD image using my command line image processing code for computing marginal distributions:
% clip_margdist.sh B.fits col Usage: clip_margdist.sh a.fits 10.0 arg1 - input FITS image arg2 - column or row averaging (col,row) # A table file consisting of two files is made % cat margdist_col.table # col averaged marginal distribution # data 1.0 405.6134 6.8315 0.2460 771.0 2.0 -247.5314 3.7051 0.1334 771.0 3.0 -179.9816 21.6218 0.7787 771.0 ..... ..... ..... 769.0 23.5948 5.8612 0.2111 771.0 770.0 38.7725 42.8013 1.5415 771.0 771.0 52.8825 6.2277 0.2243 771.0 % cat margdist_col.parlab col Column Number mean Mean signal value (adu) sig Standard devistion (adu) me Mean error about mean (adu) Npix Number of pixels % ls margdist_col.parlab margdist_col.table % xyplotter_auto margdist_col col mean 1 ------------------------------------------------------------ Enter plot title:Plot a point (P) or a line (L): Title = The Plot Title of my Choosing X: 1.00000 771.00000 Xtitle = Column Number Y: -247.53140 405.61340 Ytitle = Mean signal value (adu) To see the plot: pxy_SM_plot.py STYLE 1.00000 771.00000 -247.53140 405.61340 SHOW View plot now? (Y/N) Y Plotting: XY.plot.1 Number of points = 771 ------------------------------------------------------------ % ls Axes.1 figure_1.png List.1 margdist_col.parlab margdist_col.tableNote that in the example above, I used the python show() module to create a hardcopy of the plot. This is the file named "figure_1.png". In the next example, we'll see how to modify the appearance of this plot and how to easily add other data sets.