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ABSTRACT
We consider the pulsational properties of white dwarf star models with temperatures appropriate for

the ZZ Ceti instability strip and with masses large enough that they should be substantially crystallized.
Our work is motivated by the existence of a potentially crystallized DA variable (DAV), BPM 37093,
and the expectation that digital surveys in progress will yield many more such massive pulsators. A crys-
tallized core makes possible a new class of oscillations, the torsional modes, although we expect these
modes to couple at most weakly to any motions in the Ñuid and therefore to remain unobservable. The
p-modes should be a†ected at the level of a few percent in period, but are unlikely to be present with
observable amplitudes in crystallizing white dwarfs any more than they are in the other ZZ CetiÏs. Most
relevant to the observed light variations in white dwarfs are the g-modes. We Ðnd that the kinetic energy
of these modes is e†ectively excluded from the crystallized cores of our models. As increasing crys-
tallization pushes these modes farther out from the center, the mean period spacing S*PT between radial
overtones increases substantially with the crystallized mass fraction, In addition, the degree andMcr/M*

.
structure of mode trapping is a†ected. The fact that some periods are strongly a†ected by changes in the
crystallized mass fraction while others are not suggests that we may be able to disentangle the e†ects of
crystallization from those due to di†erent surface layer masses.
Subject headings : dense matter È stars : evolution È stars : oscillations È white dwarfs

1. ASTROPHYSICAL CONTEXT

The theoretical study of pulsating crystalline objects
extends many years into the past. One of the Ðrst numerical
studies was by Alterman, Jarosch, & Pekeris (1959), who
modeled global oscillations of the Earth. Their main inter-
est was in Ðtting the oscillation period of 57 minutes that
was excited by the Kamchatka earthquake of 1952. In the
process, they examined how the central density in their
models allowed them to match the periods of other oscil-
lation modes that were also observed to be excited by the
earthquake.

In an astrophysical context, Hansen & Van Horn (1979)
treated oscillations in white dwarf models with a crystalline
inner core. Since it was known that 1 models withM

_K were in the process of crystallizing (Lamb &Teff D 10,000
Van Horn 1975 ; Van Horn & Savedo† 1976), Hansen &
Van Horn self-consistently treated the response of the crys-
talline core to the pulsations. Their main interest was in
explaining the observed period ranges of the ZZ CetiÏs in
terms of low radial order oscillations. They found that the
g-mode periods were decreased by the presence of crys-
tallization, contrary to our present Ðndings.

McDermott, Van Horn, & Hansen (1988) treated oscil-
lations in neutron star models with a Ñuid core, a solid
crust, and a thin surface Ñuid ““ ocean.ÏÏ They considered
neutron star oscillations as a possible explanation for the
observed irregularities in the timing of subpulses from radio
pulsars, and as a source of the observed periodicities in
many X-ray burst sources. They found g-modes that were
trapped in the cores of their models, as well as those that
were trapped in the surface oceans.

Finally, Bildsten & Cutler (1995) considered g-mode
oscillations in the thin surface oceans of accreting neutron
star models. Their aim was to explain the observed 5È7 Hz
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quasi-periodic oscillations in the brightest accreting
neutron star systems. They found a good match to these
frequencies for low order, l \ 1 g-modes.

Why, then, does this problem need to be reexamined in
the context of white dwarf stars? As is often the case, new
observations and new circumstances have again made this
problem one worth considering, but in more detail than the
general analyses of the past. For example, the pioneering
calculations of Hansen & Van Horn (1979) were focused
primarily on the range of normal mode periods that are
possible given a crystallized core, not with the details of
how the periods of high-overtone g-modes are a†ected at
the level of 5%È10%. At the time, there were no known
high-mass white dwarf pulsators, and precise mode iden-
tiÐcations for any pulsating white dwarf had yet to be
attempted.

That situation changed with the discovery of pulsations
in BPM 37093 (Kanaan et al. 1992), a high-mass ZZ Ceti
star (see Fig. 1) that should be substantially crystallized
(Winget et al. 1997) ; depending on the C/O ratio in its core,
it should be between 50% and 90% crystallized by mass.
Depending on the details of its nuclear history, its core
could be composed of even heavier elements, such as Ne
(Iben 1991), which would imply that it is more than 90%
crystallized (Winget et al. 1997). The Whole Earth Tele-
scope (WET) examined this target in the spring of 1998 and
found at least eight independent frequencies, three of which
had been previously seen by Kanaan (1996). Thus, the
potential to perform asteroseismology on this object
requires us to make a more detailed theoretical investiga-
tion of the properties of crystallized pulsators.

One hope is that we will be able to independently deter-
mine the crystallized mass fraction, and therebyMcr/M*

,
provide a direct test of the theory of crystallization, now
nearly four decades old (Abrikosov 1960 ; Kirzhnits 1960 ;
Salpeter 1961). This subject is relevant to the astronomical
community at large, since phase separation of C and O
during crystallization, and, indeed, crystallization itself, rep-
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FIG. 1.ÈPosition of BPM 37093 relative to the other ZZ CetiÏs in
Bergeron et al. (1995) as a function of and The lines corre-Teff M

*
/M

_
.

spond to constant amounts of crystallized mass fraction, assuming a pure
oxygen core. If BPM 37093 has an oxygen core, it should be D90%
crystallized, and for a carbon core, D50% crystallized.

resent the largest sources of systematic uncertainties in the
age of the local Galactic disk as derived from the white
dwarf luminosity function. In addition, understanding the
internal structure of white dwarfs may prove vital in Ðtting
cosmological models to supernova Ia (SN Ia) data
(Garnavich et al. 1998), so that systematic di†erences in the
absolute magnitudes of the SNe Ia can be corrected for the
evolutionary di†erences in the SN progenitors (Ho� Ñich,
Wheeler, & Thielemann 1998).

Finally, digital surveys now in progress promise to add
considerably to the presently known number of cool white
dwarfs. For instance, the Sloan Digital Sky Survey (Gunn
1995) should increase this number by a factor of approx-
imately 20, with the result that we may have 20 such stars
with which to test the theory of crystallization.

2. EVOLUTIONARY MODELS

The basis for our equilibrium models is an updated
version of WDEC, the White Dwarf Evolutionary Code, as
described in Lamb & Van Horn (1975) and Wood (1990,
1992). Here we present only a brief summary of the input
physics in our models, with references provided for a more
complete description.

In the cores of our models we use the Lamb equation of
state (EOS; Lamb 1974), and in the envelopes we use the
tabular EOS of Fontaine, Graboske, & Van Horn (1977).
We employ the additive volume technique to interpolate
between pure compositions for the carbon/oxygen mixture
in the core and the hydrogen/helium/carbon mixture in the
envelope. The chemical proÐles of the composition tran-
sition zones in the envelope are treated with an adaptation
of the method of Arcoragi & Fontaine (1980). Essentially,
these proÐles mimic those that would be obtained in di†u-
sive equilibrium, but contain additional parameters con-

trolling the thickness of the transition regions (Bradley,
Winget, & Wood 1993).

The question of crystallization and our treatment of it is
central to our analysis. For a model with a given mass, Teff,and composition, the Lamb EOS does return a unique
answer for the degree of crystallization ; the critical value of
! is given by where is the!cr^ 160, !4 Z2e2/SrTkB T
ratio of Coulomb energy between neighboring ions to each
ionÏs kinetic energy. More recent calculations indicate a
somewhat higher value for this ratio, (Ogata &!cr^ 180
Ichimaru 1987). Our approach is to compute equilibrium
models using WDEC and the Lamb EOS, which results in
models with a self-consistently computed value of the crys-
tallized mass fraction. When we perform a pulsational
analysis of these models, however, we take the crystallized
mass fraction to be a free parameter, in hopes of using
asteroseismology to place constraints on the degree of crys-
tallization. The underlying assumption here is that two
equilibrium models that di†er only in the degree of crys-
tallization have virtually identical pressure, density, and
temperature proÐles.

While this is not a physically self-consistent procedure, it
is justiÐable for two reasons. First, the main physical e†ect
of crystallization is the release of latent heat ; this provides
the models with an additional energy source, which means
that at a given they are older. This clearly has no e†ectTeffon the pulsational properties, which depend only on the
structural parameters of a given equilibrium model. Second,
the density change at crystallization is quite small, do/
o D 10~3 (Lamb & Van Horn 1975), so the di†erence in, for
example, o(r), P(r), and T (r) between two models that di†er
only in the amount of crystallization is accordingly quite
small. As we show in ° 5.2, the e†ect of crystallization upon
g-mode pulsations can be accurately taken into account
through a modiÐed boundary condition at the assumed
solid/Ñuid interface.

3. ASYMPTOTIC NONRADIAL OSCILLATION THEORY

Stars that are Ñuid (uncrystallized) can undergo non-
radial motions, which have been labeled g- and p-mode
oscillations. In the linear limit, these modes of oscillation
are spheroidal, with the Eulerian perturbations of variables
such as the density and pressure having the angular spatial
dependence of a single spherical harmonic [i.e., o@, p@P

From a local analysis, the radial wavenumberY
l
m(h, /)]. k

ris given by
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frequency, r is the radial variable, and N2 is the famed
frequency (see Unno et al. 1989 for a moreBrunt-Va� isa� la�

complete discussion). From equation (1), we see that a mode
is propagating in a region (i.e., has if ork
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ments becoming horizontal near the surface.



978 MONTGOMERY & WINGET Vol. 526

FIG. 2.ÈPropagation diagram showing N2 and as a function ofL 12ln (r/p) (bottom axis) and (top axis) ; the center is on the[log (1[ M
r
/M

*
)

left and the surface is on the right. The region of propagation of a 600 s
g-mode is shown. The vertical dashed lines are labeled by the percentage of
mass interior to these regions, i.e., the 90% line indicates the boundary at
which 90% of the mass of the model is inside this point. We see that a
model that is this crystallized now has an inner turning point for g-mode
propagation considerably farther out than in the uncrystallized case.

Here and are the inner and outer classical turningr1 r2points, respectively, at which for a given p. We seek
r
\ 0

that in the asymptotic limit, the p-modes are uniformly
spaced in frequency as a function of radial order k, while the
g-modes are uniformly spaced in period.

A useful diagnostic for the frequency spectrum of a given
white dwarf model is the propagation diagram, an example
of which is shown in Figure 2, where we have labeled the
high- and low-frequency domains of the p- and g-modes ;
the model is of a 1.1 white dwarf with K.M

_
Teff \ 12,200

The horizontal axis is given in terms of the radial variable
ln (r/p), which is the natural logarithm of the radius divided
by the pressure, where both r and p are given in cgs units.
This radial variable has the desirable property that it
increases monotonically outward from the center and pro-
vides increased resolution in both the core (where r
approaches zero) and the envelope (where p approaches
zero). Along the upper axis, we display the more commonly
used radial variable which may be[log (1[ M

r
/M

*
),

more easily related to the structural parameters of the
models.

We note that the bumps in N2 and correspond to theL
l
2

C/O, He/C, and H/He transition zones. For instance, using
the upper axis to obtain estimates of we[log (1 [ M

r
/M

*
),

see that the outer two transition zones have MH/M
*

D
10~5 and which are in fact the valuesMHe/M*

D 10~3,
assumed in these models.

4. THE EFFECT OF A CRYSTALLINE CORE

How does a crystalline core a†ect the oscillations of a
star? As we introduce a solid core into our models, two

things occur : (1) a new class of modes appears (the
torsional/toroidal modes, in this case), and (2) the preexist-
ing p- and g-modes are modiÐed. We now treat these cases
separately.

4.1. Torsional Modes
The torsional modes, or t-modes, are very special non-

radial modes, characterized by zero radial displacement and
zero compression, i.e., and $ Æ n both vanish, where n ism

rthe displacement vector. The dispersion relation for these
modes is

k
r
2\ 1

v
s
2 (p2[ T

l
2) , (2)

where is the square of the shear velocity, k is thev
s
2\ k/o

shear modulus, and is the ““ torsionalT
l
2\ [l(l ] 1)[ 2]v

s
2

frequency. ÏÏ They propagate in the region deÐned by p2[
and their frequency spectrum is equally spaced, as is theT

l
2,

case with p-modes, with

p
k
D

kn
/ dr/v

s
.

As we might expect, the k \ 1 period for these modes goes
as the crossing time for a shear wave.R

*
/v

s
,

In Figure 3, we show a propagation diagram for t-modes
with l \ 2, using the same white dwarf model as in Figure 2.
If we imagine a model that is 90% crystallized, then the
t-mode can potentially propagate anywhere inside the 90%
mass point in the model. If the mode is an l \ 2 mode, then
its region of propagation is restricted further, to the region
for which its frequency is greater than the torsional fre-
quency, i.e., For a 1 s mode, this corresponds top2[ T 22.the part of the horizontal dotted line that lies to the left of

FIG. 3.ÈPropagation diagram for t-modes for l\ 2. The t-modes pro-
pagate only in the crystallized region, e.g., only to the left of the 90%
crystallized line for a 90% crystallized model. We note that for l \ 1, we
have so the modes propagate throughout the entire crystallizedT 12\ 0,
region in this case.
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the 90% point in Figure 3. We note that for all the l \ 1
modes, we have so these modes propagate through-T 12\ 0,
out the entire crystallized region.

Observable consequences of the t-modes, if any exist, are
difficult to identify. The longest period t-modes should have
periods of D20 s, which is too short to explain the observed
oscillations in the ZZ Cetis of 100s of seconds.3 In addition,
these modes should not be able to couple (in the linear limit)
to the Ñuid at the solid/Ñuid interface, so these oscillations
should be unable to propagate from the crystalline core
through the Ñuid to the surface. In addition, the di†erent
angular structure of the t-modes should make any nonlin-
ear coupling between these modes and the ordinary p- and
g-modes very weak ; to the Ðrst nonlinear order this coup-
ling will be zero. As a result, we expect these modes to be
unobservable unless crystallization has proceeded out into
the photosphere. The oldest known white dwarfs in the
Galaxy are not yet cool enough for this to have occurred.
We therefore turn our attention to the p- and g-modes.

4.2. Spheroidal Modes
4.2.1. p-Modes

For pressure waves traveling in a solid medium, the
velocity, is given byv

p
,

v
p
2\ j ] 2k

o
,

where o and P are the density and pres-j \!1P[ 2k/3,
sure, respectively, and is the usual adiabatic exponent!1(Landau & Lifshitz 1975). If we treat the nonzero k as a
perturbation, we Ðnd that

dv
p

v
p

D
2k

3!1P
,

where is the change in due to the Ðnite sheardv
p

v
pmodulus. In the cores of our 1.1 models, we typicallyM

_Ðnd k/p D 0.01. Thus, p-mode periods are a†ected at the
level of only a few percent by the presence of a crystalline
lattice. They are therefore of no more interest than are ordi-
nary p-modes in the context of the observed pulsations of
the DA and DB variable (DAV and DBV) white dwarfs.

4.2.2. g-Modes

We concentrate the remainder of our analysis on the g-
modes, since these are the modes that are believed to be
responsible for the observed pulsations in the white dwarf
variables. Because g-modes have large shears associated
with their Ñuid motions, we expect the nonzero shear
modulus k of the solid to have a signiÐcant e†ect on them.
Qualitatively, we may ask when the return force due to a
Ðnite shear modulus is approximately equal to the return
force normally experienced by Ñuid elements in the absence
of such shear (e.g., Bildsten & Cutler 1995). Algebraically,
the shear return force is equal to or exceeds the ordinary
return force of the Ñuid when

k
op2h2º 1 ,

where h 4 P/ o dP/dr o is a pressure scale height.

3 Such short timescale oscillations of tens of seconds may be relevant
for accreting white dwarfs in cataclysmic variable systems, although the
heating due to accretion may preclude the presence of substantial crys-
tallization in these objects.

In our models, we Ðnd that k/(op2h2) [ 1010, which indi-
cates that the g-modes are completely altered in the crys-
tallized region. Thus, a g-mode that is propagating in the
Ñuid region will Ðnd a complete mismatch as it attempts to
propagate into the crystallized region. We therefore expect
nearly complete reÑection of the g-mode at such a bound-
ary, with the result that the g-modes are essentially conÐned
to the Ñuid regions of our models.

5. NUMERICAL ANALYSIS

5.1. T he Global Solution
We now examine the above assertion and o†er a numeri-

cal justiÐcation for it. Our approach is based on the work of
Hansen & Van Horn (1979) ; we treat the ““ global ÏÏ problem,
in that we allow the solid cores of our models to respond to
the oscillations. We have used the Cowling approximation
to simplify the pulsation equations, as was also done in
Hansen & Van Horn (1979). Since g-modes in white dwarfs
are primarily envelope modes, this is an excellent approx-
imation and hardly a†ects the accuracy of our calculated
periods ; even k \ 1, l \ 2 modes have periods that are only
a†ected at the level of 0.2% (Montgomery 1998). The details
of the rest of the global treatment are summarized in
Appendix A, where we describe the oscillation variables, the
equations that they obey, the central boundary conditions,
and the connecting conditions at the solid/Ñuid interface.

In Figure 4, we plot the radial and horizontal displace-
ments of a 378.4 s, l \ 1 mode ; the model is again that of a
1.1 white dwarf with K, which is assumedM

_
Teff \ 12,200

to be 50% crystallized. As is true of all the g-modes we have
examined, the amplitude of the Ñuid motions in the solid is
decreased by D3 orders of magnitude compared to that in
the Ñuid. One other feature of the oscillations is that the

FIG. 4.ÈPlot of the log of the absolute values of the radial (top) and
horizontal (bottom) displacements as a function of ln (r/p). Note that ism

rcontinuous at the solid/crystal interface at ln (r/p)D [36.7, but is not.m
hThe magnitudes of both and are reduced by D3 orders of magnitudem

r
m
has they penetrate the solid region.
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FIG. 5.ÈKinetic energy per unit x \ ln (r/p). The vertical dashed lines
are labeled with the mass fraction of the model interior to the given point.
The mode shown is an l\ 1, k \ 25 mode with a period of 673.4 s. The
equilibrium model is a 1.1 model with at 12,200 K, and the surfaceM

_
Tefflayer masses are andMHe/M*

\ 10~3 MH/M
*

\ 10~5.

horizontal displacement is discontinuous at the solid/liquid
interface. In the approximation of zero viscosity and
laminar Ñow, the Ñuid is free to slide over the solid surface.
In reality, a turbulent boundary layer would probably form
in this region, which would tend to dissipate the pulsation
energy.

The kinetic energy density depends on the square of the
displacement, so it is attenuated by D6 orders of magnitude
in the solid core. Since the kinetic energy is an indicator of
how a given mode samples the di†erent regions of a model,
we conclude that it is a very good approximation to treat
the g-modes as excluded from the solid cores of our models.
In the following section we will demonstrate the validity
and the self-consistency of this approach.

5.2. T he ““Hard-Sphere ÏÏ Boundary Condition
As suggested in the previous section, we may be able to

reproduce the e†ects of crystallization on g-mode pulsa-
tions merely by applying a hard-sphere boundary condition
at the solid/liquid interface. By this we mean that the radial
displacement is set to zero and the horizontal dis-(m

r
\ 0),

placement is left to be arbitrary. In addition, the boundary
condition on the gravitational potential and its derivative
are the same as for the uncrystallized case, as we show in
Appendix B; these ““ hard-sphere ÏÏ calculations are not in
Cowling approximation and therefore solve the full fourth-
order adiabatic equations in the Ñuid region. Using the
hard-sphere boundary condition has the advantage that the
resulting problem is much easier to treat, in terms of both
speed and convergence.

We have calculated the fractional di†erence between
periods calculated with the ““ hard-sphere ÏÏ approximation
and those calculated with the ““ global ÏÏ treatment. Using a
Ðducial model with K, andM

*
\ 1.1 M

_
, Teff \ 12,200

assuming 90% crystallization by mass, we have examined
all l \ 1 and 2 periods between 50 and 1000 s. We Ðnd that
the fractional di†erence in periods is less than 1 part in 104,
and that the absolute error in the calculated periods never
exceeds 0.05 s. We therefore conclude that the hard-sphere
boundary condition at the solid/Ñuid interface accurately
represents the physics of g-mode oscillations in models with
crystalline cores. Bildsten & Cutler (1995) found exactly the
same approximation to be valid in their treatment of
g-modes in the surface oceans of accreting neutron star
models.

Before proceeding to the detailed numerical calculations,
we wish to convince the reader that crystallization will have
a measurable e†ect on the periods. In Figure 5 we have
plotted the kinetic energy per unit x \ ln (r/p), so that the
area underneath the curve represents the weight of each
regionÏs contribution to the total kinetic energy as a func-
tion of x. The vertical dashed lines indicate di†erent mass
points in this model. For instance, if the model is 90%
crystallized, then the kinetic energy to the left of the 90%
line is eliminated from the mode. By visual inspection, this
is of the order of 10% of the kinetic energy in the mode, so
we might well expect that the period of this mode is a†ected
at the 10% level. In fact, we will see in the next section that
the periods can be shifted by even larger amounts.

6. THE g-MODE PERIODS AS A FUNCTION OF M
cr
/M

*
6.1. Asymptotic Relations

The kinetic energy argument in ° 5.2 leads us to expect
that the g-mode periods will change measurably as the crys-
tallized mass fraction increases from 0 to 90%. With this in
mind, we reexamine the asymptotic formulae for g-mode
periods (e.g., Unno et al. 1989),

P
k
D kS*PT ,

S*PT \ 2n2
Jl(l ] 1)

CP
r1

r2 Ndr
r
D~1

, (3)

where we have written S*PT for the mean period spacing
between consecutive radial orders. Since the g-modes are
excluded from the crystallized region, the inner turning
point is now a function of Since we allow ther1 Mcr/M*

.
model to crystallize while holding all other structural
parameters constant, moves outward, so the integral inr1equation (3) decreases, with the result that S*PT and P

kboth increase.
As a heuristic tool, we would like to plot the ““ region of

period formation,ÏÏ which would tell us visually the weight
that the di†erent regions of the star have in determining the
period of a mode. This problem has been examined several
times in the past, for example by Kawaler, Winget, &
Hansen (1985), Schwank (1976), Goosens & Smeyers (1974),
and originally by Epstein (1950).

To simplify matters, we examine this weight function in
the asymptotic limit of high k and l. For g-modes, we must
be content to determine a ““ region of frequency formation. ÏÏ
From asymptotic theory, we Ðnd that the relative contribu-
tion to the total frequency per unit radius is

dp
dr

B
N
r

,

which depends only on N and r. In order to expand the
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radial axis in both the center and the envelope, and to make
the resulting functions easier to examine, we choose
x \ ln (r/p) as our radial coordinate. Then the above rela-
tion becomes

dp
dx

B
N

1 ] V
, (4)

where We emphasize that the appearance ofV 4!1 gr/c
s
2.

the sound speed in the variable V is purely a result of thec
s
2

above radial coordinate change, and does not reÑect a
dependence of g-mode frequencies on c

s
.

In Figure 6, we plot dp/dx versus x for a 1.1 M
_

, Teff \12,200 K model with andMHe/M*
\ 10~3 MH/M

*
\ 10~5.

The three spikes in dp/dx correspond to the composition
transition zones of O/C, C/He, and He/H. From inspection
of this Ðgure, we would expect the C/He transition zone to
have the least e†ect on the g-mode periods, while the He/H
transition zone in the envelope should have the largest
e†ect. Numerically, Bradley (1993) has found this to be the
case, with the period spacing and mode trapping being most
sensitive to the hydrogen layer mass and least sensitive to
the thickness of the helium layer. Physically, this is due to
the fact that the He/H transition zone, since it is closest to
the surface, is the least degenerate, and so has the largest
thermal contributions to the frequency. InBrunt-Va� isa� la�
addition, it is the only zone in which there is a contrast in
the atomic weight per electron, In going from He to H,k

e
.

goes from 2 to 1 ; for the O/C and C/He zones, fork
e

k
e
\ 2

both chemical species in the transition zone.
It is worth commenting on the similarities between the

distribution of kinetic energy in Figure 5 and the shape of
the g-mode period formation region in Figure 6. The kinetic
energy plot is for a numerically calculated l\ 1, k \ 25
mode, whereas the period formation region is in the high-k
limit. The value of N/(1 ] V ) in Figure 6 should correspond

FIG. 6.ÈFrequency (period) formation region for g-modes in a 1.1 M
_model with K. The three spikes are all composition transitionTeff \ 12,200

zone features, which from left to right are due to the O/C, C/He, and He/H
transition zones.

to the wavelength of oscillations as a function of x in Figure
5. This is in fact the case, since we see that peaks in Figure 6
correspond to rapid spatial oscillations in the kinetic energy
density. Similarly, the small value of N/(1 ] V ) in Figure 6
for x in the range of [10 to [4 results in a longer spatial
wavelength in the oscillations of the kinetic energy density
in Figure 5 at this value of x.

We also note that the overall envelope of the kinetic
energy is similar in shape to Figure 6. With this in mind, we
calculate the kinetic energy distribution in the asymptotic
limit. The kinetic energy, dE, in a shell dr is given by

dEB or2 dr[m
r
2] l(l ] 1)m

h
2]

B or2 drm
h
2 ,

where we have used the fact that for g-modes. If wem
h
? m

rnow substitute for the asymptotic value taken fromm
hUnno et al. (1989), then we Ðnd that the envelope of the

kinetic energy density varies as

dE
dr

B or2m
h
2

B
N
r

. (5)

Thus, we see that in the asymptotic limit the kinetic energy
samples the model in the same way as does the frequency
for g-modes.

Although the above discussion might give the impression
that modes of this radial overtone number are safely in the
asymptotic limit, such is not the case. For the mode in
Figure 5, it can be treated in the asymptotic limit in the
region between x \ [20 and x \ [5, i.e., its amplitude
varies ““ slowly ÏÏ compared to the spatial wavelength of the
mode. However, the composition transition zone at
x D [23 provides a much more rapid spatial variation
than the wavelength of this mode. Depending on the details
of how the mode interacts with this feature, it will be par-
tially transmitted and partially reÑected at this boundary.
Thus, the amplitudes of the mode on each side of a tran-
sition zone will not in general be given by the asymptotic
theory. In other words, the e†ect of a transition zone is to
enhance the amplitude of a mode on one side of a transition
zone relative to its amplitude on the other side. This e†ect is
generically known as ““ mode trapping,ÏÏ although in the
context of white dwarfs this term usually denotes a mode
that has an enhanced amplitude in the outer surface layer,
i.e., the H layer for DAVs. Returning to the mode in Figure
5, neighboring modes that di†er from it by only ^1 in k still
have somewhat di†erent distributions of kinetic energy
between the di†erent transition zones. Thus, we cannot con-
sider these modes to be globally described by asymptotic
theory.

6.2. Numerical Results
We now wish to make a comparison between the func-

tional form of the period spacing implied by equation (3)
and that derived from direct numerical calculations. To do
this, we normalize S*PT to the average period spacing in
the uncrystallized case, denoted by Such a compari-S*PT0.son is shown in Figure 7a, where the solid line shows the
analytic relation, and the Ðlled circles show the result of a
numerical pulsational analysis of l \ 2 periods between 500
and 1000 s. We have made the model, a 1.1 C/O coreM

_
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FIG. 7.ÈComparison of analytical (solid line) and numerical ( Ðlled
circles) period spacings, as a function of where each has beenMcr/M*

,
normalized to the period spacing in the uncrystallized case. In order to
minimize mode trapping e†ects, the Schwarzschild criterion has been used
to compute the frequency in (a), whereas in (b) the modiÐedBrunt-Va� isa� la�
Ledoux prescription has been used. The ““ kink ÏÏ in (b) for 0.75¹

is due to the changing C/O proÐle in the core.Mcr/M*
¹ 0.90

model with K, artiÐcially smooth by using theTeff \ 12,200
Schwarzschild criterion for the frequency,Brunt-Va� isa� la�
which essentially removes the bumps from the Brunt-

frequency and therefore minimizes mode trapping.Va� isa� la�
The agreement between the two methods is extremely good.

We now examine the more realistic case, where we
include the modiÐed Ledoux criterion for the Brunt-Va� isa� la�
frequency as described in Brassard et al. (1991). This plot is
shown in Figure 7b. Although the overall shape of the plot
has changed somewhat, the agreement between the asymp-

totic and numerical results is still quite good. The observed
““ kink ÏÏ for is caused by the oxygen0.75¹Mcr/M*

¹ 0.90
mass fraction decreasing from 0.80 to 0.00 in this range. If
we examine Figure 6 for the period formation region and we
imagine moving the crystallization region to the right, we
see that as we encounter the O/C transition zone, the rate of
change of the area under the curve doubles, so we would
expect the slope of the curve in Figure 7b to double as well,
which is what we Ðnd.

If we use a smaller range of periods to deÐne the period
spacing numerically, then we expect mode trapping e†ects
to be ampliÐed even further. This is illustrated in Figure 8,
where we have used l \ 2 periods in the range 500È700 s to
calculate a period spacing. Thus, if we have a complete set
of observed l \ 2 periods in this range, we can typically
expect ““ errors ÏÏ of the order of D5% in translating this to
an asymptotic period spacing.

An equivalent statement to the period spacing increasing
with is that the modes themselves are gettingMcr/M*farther apart in period, so that their periods must also be
increasing. To illustrate this, we show how a spectrum of
mode periods evolves continuously with SinceMcr/M*

.
mode identiÐcation between di†erent models is not a simple
matter, we have calculated the spectrum of modes on a Ðne
enough mesh in so that the period changes areMcr/M*small compared to the di†erences between consecutive
radial overtones. We then identify a given mode at one
mesh point with the nearest mode in period of the neighbor-
ing mesh point.

The result of this calculation for l \ 2 periods is shown in
Figure 9, where the model considered is a 1.1 withM

_K, and WeTeff \ 11,800 MHe/M*
\ 10~3, MH/M

*
\ 10~5.

have used the hard-sphere approximation for the solid/
liquid boundary and the full Ledoux prescription for the

frequency in calculating these periods. WeBrunt-Va� isa� la�

FIG. 8.ÈSame as Fig. 7b, except that periods between 500 and 700 s
have been used to deÐne the average period spacing from the pulsation
calculations ; we have picked this range of periods to mimic that observed
in BPM 37093. For this case, we see that mode trapping e†ects result in
larger deviations from the asymptotic relation.
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FIG. 9.ÈEvolution of l\ 2 g-mode periods as a function of the crys-
tallized mass fraction. We see that in a given region, the periods are either
increasing or relatively constant.

have varied the parameter in increments of 0.01Mcr/M*from 0.00 to 0.99. We note that the periods either appear to
be increasing or are relatively constant. In fact, even in
regions in which the period of a given mode appears to be
constant, its period is still slightly increasing with Mcr/M*

.
Figure 9 represents the most detailed calculation to date

showing how g-mode periods in white dwarf models evolve
as a single parameter is slowly varied (for a previous
example, see Wood & Winget 1988). As such, it exhibits
many interesting features. First, the ““ kink ÏÏ in the periods in
the range is again due to the crys-0.75¹Mcr/M*

¹ 0.90
tallized region moving out into a region with a changing
C/O proÐle ; thus, this feature is merely a result of our
assumed C/O proÐle. A more intrinsic feature of this plot
are the ““ avoided crossings.ÏÏ While it is never possible
numerically to establish with complete certainty whether or
not true avoided crossings occur, the way in which the
periods evolve as a function of is strongly remi-Mcr/M*niscent of behavior found by Aizenman, Smeyers, &
Weigert (1977). For example, the two lowest period modes
pictured in Figure 9 have what appears to be an avoided
crossing at To the left of this point, theMcr/M*

\ 0.58.
lower period mode has more of its kinetic energy deep in the
model near the solid/Ñuid interface, while to the right of this
point it is the higher period mode that has the deeper
kinetic energy. Thus, the modes do switch character at this
point, in the manner found by Aizenman et al. (1977).

Our general result that the g-mode periods increase due
to the presence of crystallization is not what was found by

Hansen & Van Horn (1979), who reported that the g-mode
periods became shorter when the Ðnite shear of the solid
core was included. We believe that the resolution of this
disagreement lies in a reinterpretation of their calculated
periods, not in the periods themselves. Hansen & Van Horn
(1979) calculated the periods of k \ 1 and 2 modes for l\ 1,
2, and 3, both in the Ñuid case and in the case of a 99.9%
crystallized core. They found that in the crystallized case,
the k \ 1 periods had decreased by approximately a factor
of 2 compared to the Ñuid case ; for example, the l\ 1
period decreased from 193.8 to 99.8 s. Our interpretation is
that the 99.8 s mode is actually a new mode, which would
not exist if the core were not crystallized. Thus, the main
e†ect of the solid core in their calculations was, in our view,
to add an extra mode with a period below that of the pre-
vious k \ 1 mode. To support this, we compare their k \ 1
periods in the Ñuid case with their k \ 2 periods in the solid
case. For l \ 1, 2, and 3, we Ðnd that their periods now
increase from 193.8 to 193.9 s, from 111.9 to 112.0 s, and
from 79.1 to 79.2 s, respectively. While these increases are
small, they are consistent with what one might expect from
a K Fe core white dwarf model that is stronglyTeff D 10,000
degenerate in its interior. In addition, the periods in the
uncrystallized and the crystallized states are close enough to
strengthen our conviction that this is actually the ““ correct ÏÏ
mode identiÐcation.

Using our global code, we are numerically unable to treat
models that are more than 97% crystallized. For 97% crys-
tallized models, we do Ðnd evidence for low-period
““ interfacial ÏÏ modes that do not exist in the uncrystallized
case ; interfacial modes such as these were found in neutron
star models by McDermott et al. (1988). These modes could
be the new modes found by Hansen & Van Horn (1979). We
caution, however, that we do not understand the properties
of these modes, i.e., how they change period as the degree of
crystallization changes and whether or not the standard
deÐnition of radial overtone number is still meaningful. We
are therefore unable to extrapolate these results with con-
Ðdence to the case of 99.9% crystallization that Hansen &
Van Horn treated.

7. S*PT AS A FUNCTION OF THE MODEL PARAMETERS

In uncrystallized models, the period spacing is a function
of many things, including the total stellar mass, the e†ective
temperature, and the hydrogen layer mass. This is still true
in the crystallized case, and we examine the e†ects that each
has on S*PT. The Ðducial model against which we compare
our calculations is a model with M

*
\ 1.1 M

_
, Teff \11,800 K, and UnlessMH/M

*
\ 10~5, MHe/M*

\ 10~3.
otherwise stated, all periods are calculated using the modi-
Ðed Ledoux prescription for the frequency.Brunt-Va� isa� la�

7.1. Hydrogen L ayer Mass, MH
For 0.6 models, nuclear burning considerations forceM

_to be smaller than a few times 10~4 (Iben &MH/M
*Tutukov 1984 ; Iben & Macdonald 1985). For models near

1.1 this translates into due to theM
_

, MH/M
*

[ 10~5
higher gravities and pressures. We therefore examine
models with between 10~10 and 10~5.MH/M

*In Figure 10a, we plot S*PT versus for di†er-log MH/M
*ent degrees of crystallization, as shown in the legend. For

this model, we have used a C/O core and set MHe/M*
\

and K, and we have calculated the10~3 Teff \ 11,800
frequency using the Schwarzschild criterion,Brunt-Va� isa� la�
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FIG. 10.È(a) S*PT as a function of for di†ering degrees oflog MH/M
*crystallization, with N2 calculated according to the Schwarzschild cri-

terion. (b) Same as (a), but with N2 calculated using the Ledoux prescrip-
tion.

so that we can minimize mode trapping e†ects as much as
possible. We see that the e†ect of increasing crystallization
is to increase S*PT at all compositions. Similarly, the e†ect
of decreasing is also to increase S*PT, for alllog MH/M

*degrees of crystallization. Thus, a change in one can mimic
a change in the other. Figure 10b shows the more physical
case, where we have used the Ledoux prescription for calcu-
lating the frequency in this model. The sameBrunt-Va� isa� la�
trends are still evident, but the period spacing itself has
decreased by 3È4 s for all the models. This di†erence is due
to the nontrivial contribution of the composition transition
zones.

The horizontal dashed lines in Figures 10a and 10b are
useful in demonstrating how observations could be used to
constrain the parameter space. Here we assume a
““measured ÏÏ value of S*PT D 17 s. The dashed lines rep-
resent an uncertainty of 5% in translating this ““ observed ÏÏ
S*PT to an asymptotic value, as is suggested by the devi-
ations due to a Ðnite sampling of the period range in Figure
8. For these calculations, we have calculated the period
spacing between consecutive l \ 2 modes, all with m\ 0.
The exact same dependencies hold for the case of l\ 1
modes, if the mean period spacings are multiplied by a
factor of J3.

From Figure 10b, we Ðnd the following constraints on
our parameter space : and 0.00¹[7 ¹ log MH/M

*
¹ [5

This is a fairly large range for each param-Mcr/M*
¹ 0.80.

eter, but they are now no longer independent. If we know
one of them, then that can reduce the allowed range for the
other. For instance, if the model is 50% crystallized, then we
must have From Figure 10a we[6 \ log MH/M

*
\[5.

also see that there is no choice of parameters for which the
period spacing matches the ““ observed ÏÏ value. This demon-
strates the large e†ect that the composition transition zones
have on the average period spacing.

7.2. Total Stellar Mass, M
*

We now consider models that di†er only in mass from
our Ðducial model ; all the other parameters are held Ðxed.
In Figure 11a we plot the average period spacing for a set of

models, again as a function of whereM
*

\ 1.15 M
_

MH,
we continue to use the more physical Ledoux prescription
for the frequency. Since the more massiveBrunt-Va� isa� la�
models are smaller in radius, they have a higher average
density, and therefore smaller periods and period spacings.
For the less massive, 1.05 models in Figure 11b, we ÐndM

_the opposite is the case ; these models are larger in radius
and therefore have larger period spacings.

7.3. E†ective Temperature, Teff
In Figure 12 we show how the mean period spacing for

l \ 2 modes varies as a function of the e†ective temperature
of our Ðducial models. The horizontal dotted lines again
bracket an ““ observed ÏÏ period spacing of 17 s. We see that
as the models cool, the period spacing increases. This occurs
because the models are becoming more degenerate. As the
models approach complete degeneracy, the Brunt-Va� isa� la�
frequency becomes arbitrarily small, except in composition
transition zones, so the periods and period spacings become
large.

7.4. Scaling Relations
The results of the previous sections can be used to obtain

approximate scaling relations for S*PT. Using models with
between 11,200 and 12,800 K, between 1.05 andTeff M

*1.15 and hydrogen layer masses with H 4M
_

,
between 5 and 10 (all ranges inclusive), we[log MH/M

*obtain the relation

S*PT
l/2 \ Af 6 [1] 0.54(H [ 5) f 6 ]0.24M1

*
~1.7T1 eff~0.95 , (6)

where A4 14.7 s, M1
*

4M
*
/(1.1 M

_
), T1 eff 4 Teff/(12,000

K), and is the ratio of the asymptoticf 64 S*PT/S*PT0period spacing at Ðnite crystallization to that at zero crys-
tallization, e.g., the solid line in Figure 7b. The bar on f
indicates that we have chosen f for an ““ average ÏÏ model,
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FIG. 11.ÈSame as Fig. 10b, but for (a) 1.15 and (b) 1.05M
_

M
_models.

where by average we mean a model that has M
*

\ 1.1 M
_

,
K, andTeff \ 12,000 MH/M

*
\ 10~5, MHe/M*

\ 10~3.
Next, we examine the sensitivity of S*PT to small

changes in these parameters. If we look at small variations
around a model that is 50% crystallized and has an H layer
thickness corresponding to H \ 5, we Ðnd

dS*PT
S*PT

\ 0.13 dmcr] 0.15 dH [ 1.70
dM

*
M

*
[ 0.95

dTeff
Teff

,

(7)

where we have deÐned and dY represents amcr4 Mcr/M*
,

small change in a given quantity Y . From Ðts of spectra of
BPM 37093, Bergeron et al. (1995) Ðnd Teff \ 11,740 ^ 200

FIG. 12.ÈAverage period spacing as a function of for di†erentTeffdegrees of crystallization, as shown in the legend. The models all have
andM

*
\ 1.1 M

_
, MHe/M*

\ 10~3, MH/M
*

\ 10~5.

K, and From this we see that theM
*

\ 1.09 ^ 0.05 M
_

.
errors in the mass determination produce about 5 times the
e†ect of the errors in the temperature determination. Thus,

is the most important input parameter that the obser-M
*vations can provide. The quantities and H, the crys-mcrtallized mass fraction and the negative of the log of the

hydrogen layer mass, respectively, are not observable quan-
tities in the standard sense. They can only be determined
from an asteroseismological analysis of a particular star,
which leads us to the topic of the next section.

8. MODE TRAPPING

The traditional way to obtain information about the
surface layer thicknesses of white dwarfs is to use mode
trapping information for individual modes, i.e., calculate

directly from the data set and match this*P
k
4 P

k`1[ P
kto numerical calculations. There is no reason why this will

not work now, as long as we have enough well-identiÐed
consecutive overtones.

In general, a transition zone may trap a mode in the
region above it or below it. For a mode to be trapped in the
outer hydrogen layer, it needs to have a resonance with the
He/H transition region such that its vertical and horizontal
displacements both have a node near this interface
(Brassard et al. 1992) ; this is the case that is traditionally
referred to as mode trapping in the context of white dwarfs.
If we imagine integrating this mode inward from the surface
using the boundary conditions there, then we see that all
this condition depends on is the mode frequency. Whether
or not a frequency that would be trapped is indeed an
allowable normal mode frequency does depend on the
amount of crystallization in the core. From this, we see that
it should be possible to disentangle the e†ects of crys-
tallization and mode trapping.

More precisely, Brassard et al. (1992) Ðnd that the
average period di†erence, between successivelyS*PT

t
,
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trapped modes is

S*PT
t
\ 2n2

Jl(l] 1)

AP
rH

r2 Ndr
r
B~1

, (8)

where is deÐned as the radius at the base of the hydrogenrHlayer ; the integral is therefore over the hydrogen surface
layer only. We see that this does not depend on any of the
properties of crystallized region, but only on those of the
hydrogen envelope.

In Figure 13, we plot the forward period di†erence,
versus period, for an equilibrium*P

i
4P

i`1[ P
i
, P

i
,

model with K,M
*

\ 1.1 M
_

, Teff \ 11,800 MH/M
*

\
10~5, and This shows how the mode trap-MHe/M*

\ 10~3.
ping changes as the crystallized mass fraction is varied from
0.0 to 0.9 in increments of 0.1. In general, we see that the
amplitude (strength) of the trapping decreases with increas-
ing crystallization. This is because as the degree of crys-
tallization increases, all modes become more like envelope
modes, which decreases the di†erences between the trapped
and untrapped modes.

Concerning the detailed structure of the mode trapping
itself, the combined e†ect of the di†erent transition zones
makes it difficult to deÐne a trapping cycle. Furthermore,
we see that this structure changes signiÐcantly as the degree
of crystallization is changed by only 10%. This suggests that
we will need to examine the degree of crystallization in
smaller increments.

Figure 14a is a more detailed version of Figure 13,
showing how *P changes as the crystallized mass fraction is
increased from 0.25 to 0.34 in increments of 0.01. First, we
note that there are many trapping features that move uni-
formly to the right as the degree of crystallization is
increased. For instance, there is a trapping feature with a
period of D580 s at 25% crystallization, which migrates to
a period range of D640 s at 32% crystallization. Second,
there are many features that remain relatively constant. The

(forward period di†erence) vs. (period)FIG. 13.È*P
i
4 P

i`1 [ P
i

P
ifor l\ 2 modes. Each panel is labeled by the degree of crystallization

assumed for the model, with the other model parameters being held con-
stant.

mode trapping structure in the range 420È500 s is virtually
unchanged, and the mode with a period of D775 s is also
somewhat trapped in the majority of the panels. This D775
s mode has a period that does not evolve as rapidly as many
of the other modes. Even so, its period changes by D0.6 s
for every 5% change in the degree of crystallization. Since it
is possible to measure periods to quite high accuracies of a
few tenths of a second (e.g., Winget et al. 1991, 1994), we
should in principle, using modes such as this as well as more
sensitive modes, be able to derive quite accurate estimates

FIG. 14a FIG. 14b

FIG. 14.ÈFilled circles connected by lines show the period spacing in the model vs. the period, for degrees of crystallization varying between (a) 25% and
34% and (b) 50% and 59%.
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of the crystallized mass fraction, if we are able to obtain a
unique solution.

Figure 14b shows a di†erent range of crystallization, this
time between 50% and 59%, for the same white dwarf
model as used for Figures 13 and 14a. Here we see that
there is again a trapping feature that migrates through the
600 s region, as well as a mode with a period again at D775
s that tends to be trapped (at least in the upper seven
panels). The fact that some periods are strongly a†ected by
changes in the crystallized mass fraction while others are
not suggests that we may be able to disentangle the e†ects
of di†erent surface layer masses from those due to crys-
tallization.

9. OBJECTIVE FITTING PROCEDURES

We need an automated procedure for searching param-
eter space, both to obtain more precise Ðts and to address
the issue of uniqueness of Ðt. The sensitivity of the trapping
features to the crystallized mass fraction is both a bles-
sing and a bane : it is a blessing because this should allow
us in principle to determine precise values for Mcr/M*

,
and it is a bane because in practice it requires the
computation of an enormous number of models on
a Ðne grid in order to sample the parameter space
adequately.

We are currently exploring di†erent methods that would
address these issues. The Ðrst part of the problem is choos-
ing a method, such as ““ simulated annealing ÏÏ or a ““ genetic
algorithm, ÏÏ that can Ðnd global minima of multidimen-
sional functions. The second part is automatically gener-
ating the equilibrium models with a given set of Ðt
parameters, so that these models can be examined pulsa-
tionally. Traditionally, the evolution of such models has
been a ““ hands on ÏÏ procedure, and this is true of our evolu-
tionary models as well.

Unfortunately, this problem is beyond the scope of this
paper. Given the recent increase in both processor speeds
and the degree to which problems are being parallelized, it
should be possible to implement an objective Ðtting scheme
that will allow us to adequately sample the parameter space
of the models. Such an approach is currently being devel-
oped at the University of Texas. This should, among other
things, allow us to assess objectively the uniqueness of our
asteroseismological Ðts.

10. CONCLUSIONS

In this paper we have calculated the e†ect of crys-
tallization in the cores of our white dwarf models on the
frequency spectrum of pulsations. To a very high degree of

accuracy, we Ðnd that the kinetic energy of the g-modes is
excluded from the crystallized cores of our models. As the
degree of crystallization is increased, the kinetic energy of
these modes is pushed farther out from the central regions,
and both the periods and the mean period spacing, S*PT,
between consecutive radial overtones of the same l
increases. Using an ““ observed ÏÏ value of s,S*PT

l/2 \ 17
we show how the range of possible models can be con-
strained, and how mode-trapping features can be used to
obtain more precise information about these Ðts. Since
some periods are strongly a†ected by changes in the crys-
tallized mass fraction while others are not, we may be able
to disentangle the e†ects of di†erent surface layer masses
from those due to crystallization.

The introduction of a crystalline medium that is able to
support shear does allow a new class of modes to exist, the
torsional or t-modes. Since these modes have zero radial
displacement, they should be unable to couple to the overly-
ing Ñuid layers, and should therefore remain unobservable.
The p-modes have periods that are only a few percent di†er-
ent from their uncrystallized values. Since these modes are
not observed to be excited, they are also not of interest in
the context of BPM 37093 and the other ZZ CetiÏs.

By investigating stars such as BPM 37093, aster-
oseismology may eventually be able to tell us whether crys-
tallization occurs in the way we expect theoretically. Since
crystallization and the e†ects of phase separation are the
largest single sources of systematic uncertainties in the
white dwarf luminosity function, this would allow us to
improve our estimates of the age of the Galactic disk as
derived from the observed white dwarf luminosity function.
Furthermore, since phase separation, if it occurs, a†ects the
composition of the central regions of white dwarfs, this
could systematically a†ect the observed characteristics of
SNe Ia (e.g., total luminosity), which are believed to come
from white dwarf progenitors.

Finally, digital surveys now in progress promise to add
considerably to the presently known number of cool white
dwarfs. For instance, the Sloan Digital Sky Survey (Gunn
1995) should increase this number by a factor of approx-
imately 20, with the result that we may have 20 such stars
with which to test the theory of crystallization.
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and valuable discussions, as well as the referee for his
helpful comments.
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APPENDIX A

SPHEROIDAL OSCILLATION EQUATIONS IN A CRYSTALLINE MEDIUM

A1. THE EQUATIONS

We deÐne and the radial and horizontal parts of the total displacement, in terms of the total vector displacement, i.e.,m
r

m
h
,

n \
C
m
r
(r), m

h
(r)

L
Lh

, m
h
(r)

1
sin h

L
L/
D
Y

l
m(h, /) . (A1)
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We take the following equations from Hansen & Van Horn (1979). The oscillation variables are

z1\ m
r
r

,

z2\ 1
k0

A
ja ] 2k

dm
r

dr
B

,

z3\ m
h
r

,

and

z4 \ k
k0

Adm
h

dr
[ m

h
r

] m
r
r
B

,

where and are the radial and horizontal displacements, respectively, as deÐned in equation (A1), r is the radius,m
r

m
hk is the shear modulus, and with These variables are the same as thosej \!1 p[ 23k, a 4 (1/r2)d(r2m

r
)/dr [ lü(m

h
/r), lü 4 l(l ] 1).

in Hansen & Van Horn (1979) except that we have divided and by so that the equations are dimension-z2 z4 k04 k(r \ 0),
less.4 The fourth-order system of equations (in the Cowling approximation) is then

rz1@ \ [(1] 2jd)z1 ] k0 dz2] jlüdz3 , (A2)

rz2@ \ 1
k0

([p2or2 [ 4ogr ] 4nGo2r2] 4kb d)z1[ 4k dz2] lü

k0
(ogr [ 2kbd)z3 ] lüz4 , (A3)

rz3@ \ [z1] k0
k

z4 , (A4)

rz4@ \ 1
k0

(gor [ 2kbd)z1[ j dz2] 1
k0

M[op2r2] 2kd[j(2lü [ 1)] 2k(lü [ 1)]Nz3 [ 3z4 , (A5)

where the prime denotes d/dr, d 4 (j ] 2k)~1, b 4 3j ] 2k, g is the acceleration due to gravity, and o is the density.

A2. CENTRAL BOUNDARY CONDITIONS

Since the models we are considering are crystallized in the center, we need to obtain the boundary conditions in the center,
so that we can begin the outward integrations. If we assume that the solutions scale as rs near the center, we Ðnd four
solutions : s \ l[ 2, l, [(l] 1), and [(l] 3). Only the Ðrst two solutions are regular at the origin, so they span the space of
physical solutions. The general solution near the center is therefore given by

Mz
i
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t
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t

t

t

t

1
2(l[ 1)
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2(l[ 1)
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)
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;

t
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(
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:

t

t

t

t

t

t

(l ] 1)[jl ] k(l [ 2)]

2[jl(l ] 2)] k(l2] 2l [ 1)]
(l ] 1)[j(l2[ l [ 3)] k(l2 [ l [ 2)]

jl(l ] 2)] k(l2] 2l [ 1)
j(l ] 3)] k(l ] 5)

2[jl(l ] 2)] k(l2] 2l [ 1)]
1
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;

t

t

t

t

t

t

rl ,

where a and b are arbitrary coefficients, and where k and j in the above formula are taken to have their central values. These
two solutions for the eigenfunction near the center are equivalent to the relations given in Crossley (1975), if the Cowling
approximation is used.

A3. THE SOLID/FLUID INTERFACE

In practice, we integrate each independent solution outward from the center. With the exception of the arez3, Mz
i
N

continuous at the solid/Ñuid interface. Since in the Ñuid, we choose the ratio of a and b such that vanishes at thisz4\ 0 z4interface. This leaves only one overall normalization constant. Furthermore, at the boundary. Since is alsoy1\ z1 z2continuous, we have

z2\ ja
k0

\ jV
g
(y1[ y2)

k0
,

4 We note that there is a typographical error in the deÐnition of in Hansen & Van Horn 1979 (an additional factor of 1/r), but it does not propagatez4throughout the rest of their formulae.



No. 2, 1999 EFFECTS OF CRYSTALLIZATION ON WHITE DWARF PULSATION 989

where we have used the oscillation equations in the Ñuid to express a in terms of the Dziembowski variables At theMy
i
N.

Ñuid/solid interface, if we solve for the in the Ñuid in terms of the in the solid, we ÐndMy
i
N Mz

i
N

y1\ z1 ,

y2\ z1[ k0
jV

g
z2 ,

where and j is now since k is zero in the Ñuid. Since we have now speciÐed and (up to an overallV
g
\ gr/c

s
2, !1P, y1 y2normalization constant that is present in the we can now integrate the normal oscillation equations in the Ñuid (in theMz

i
N),

Cowling approximation) out to the photosphere of the model.
The main difficulty in applying this procedure is that numerical noise can come to dominate the integrations in the

crystalline core. The model that Hansen & Van Horn (1979) considered was a pure Fe core model near 10,000 K. As a result,
the theory of crystallization suggested that it should be about 99.9% crystallized by mass. The technique we have used would
probably not be viable for this case. The problem is that the two independent solutions, while quite di†erent near the center,
become almost linearly dependent farther out. Thus, we lose the ability to calculate the ““ di†erence ÏÏ between the two
solutions that is needed in order to set equal to zero at the solid/Ñuid interface. For our program, numerical noisez4dominates this process for g-modes in models that are more than 98% crystallized.

In terms of the physics, however, we are somewhat overdramatizing the situation, since nearly all of the pulsational results
in this paper are based on the simple approximation that at the solid/Ñuid boundary. From the self-consistenty1\ 0
treatment, we have found this to be an extremely good approximation from 0% crystallization to 98% crystallization, and we
have no reason to believe that this situation will change at higher amounts of crystallization. Using this simpliÐed treatment

at the solid/Ñuid boundary), we are therefore able to treat accurately arbitrary degrees of crystallization.(y1\ 0

APPENDIX B

THE BOUNDARY CONDITIONS ON '@(r) AT THE CRYSTALLIZATION BOUNDARY

The perturbations to the gravitational potential are, of course, generated by the perturbations in the density. They can
therefore be written as

'@(r) \ G
P

dV @
o@(r@)

o r [ r@ o
, (B1)

where we have assumed that the density vanishes at the surface. If we now write and o@(r@)\'@(r) \ '@(r)Y
l
m(h, /)

and use the usual expansion of o r [ r@ o in surface harmonics, then we arrive at the result of Christensen-o@(r@)Y
l
m(h@, /@)

Dalsgaard (1976),

'@(r)\ 4nG
2l] 1

C
r~(l`1)

P
0

r
o@(r@)r@l`2 dr@ ] rl

P
r

R
o@(r@)r@~l`1 dr@

D
. (B2)

We will assume that there is no motion for where is the radius of the crystallization boundary. Thus, we haver \ r
x
, r

xo@(r)\ 0 for If we now take a derivative of '@(r) in the region we Ðndr \ r
x
. r

x
\ r \ R,

d'@(r)
dr

\ 4nG
2l] 1

C
[(l] 1)r~(l`2)

P
0

r
o@(r@)r@l`2 dr@] lrl~1

P
r

R
o@(r@)r@~l`1 dr@] ro@(r) [ ro@(r)

D
,

where we have assumed that the density is zero at the outer boundary. Evaluating this at and remembering thatr \ r
x
,

o@(r)\ 0 for we Ðnd that the Ðrst integral vanishes, which, along with the cancellation of the last two terms, leaves onlyr \ r
x
,

d'@(r
x
)

dr
\ 4nG

2l ] 1
lr
rx
l~1
P
rx

R
o@(r@)r@~l`1 dr@ . (B3)

Finally, using equation (B2) to evaluate '@(r) at and combining it with equation (B3), we obtain the Ðnal result :r \ r
x
,

d'@(r
x
)

dr
\ l

r
x

'@(r
x
) . (B4)

This is the same boundary condition as usually encountered in the uncrystallized case for r approaching zero (see, e.g., Unno
et al. 1989) ; we see that it is unchanged by the presence of a rigid, crystallized core.

APPENDIX C

GLOBAL CONSERVATION OF MOMENTUM FOR l \ 1 MODES

As a Ðnal note, we mention that the derivation by Christensen-Dalsgaard (1976) that l \ 1 modes conserve the total
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momentum of the system and are therefore allowable pulsation modes is easily extended to the present case, in which we have
a solid, completely rigid core, surrounded by a Ñuid envelope in which there are pulsations.

In the present case, the center of mass of the Ñuid in the envelope is displaced by the pulsations. However, the pressure
variations associated with these pulsations in the Ñuid exert a net force on the crystalline core, causing its center of mass to
move also. Considered as a system, the core plus envelope conserves momentum, so that there is no net displacement of the
center of mass, and l\ 1 oscillations are again allowed.
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