
Copyright

by

Michael Houston Montgomery

1993



The Frequency Splitting of Multiplets in the Oscillations

of Weakly Magnetic White Dwarf Stars

by

MICHAEL HOUSTON MONTGOMERY, M.A.,B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1994



The Frequency Splitting of Multiplets in the Oscillations

of Weakly Magnetic White Dwarf Stars

APPROVED:

Supervisor:



Acknowledgments

I would like to thank the members of my committee, and especially

my supervisor Don Winget, for their guidance and instruction during the past

year and a half. I would also like to thank Ethan Vishniac, for many helpful

discussions about magnetic fields, and Paul Bradley, for help and advice on

using the numerical tools of pulsation theory. I would also like to thank the

other members of the WET lab for their assistance in areas too numerous

to mention: Antonio Kanaan, Scot Kleinman, Chuck Claver, Todd Watson,

Atsuko Nitta, Eric Klumpe, and Usama Aziz.

MICHAEL HOUSTON MONTGOMERY

The University of Texas at Austin

December, 1994

iv



ABSTRACT

The Frequency Splitting of Multiplets in the Oscillations of Weakly

Magnetic White Dwarf Stars

by

MICHAEL HOUSTON MONTGOMERY, M.A.

SUPERVISOR: D. E. WINGET

This research is an attempt to ascertain how the frequencies of nonradial g-

mode oscillation of the sort observed in white dwarf stars are affected by a

magnetic perturbation. Specifically, we have focussed on the differences in fre-

quency between oscillations with spherical harmonic indices of the same ` but

different m. In general, we have found that this ‘splitting’ of multiplets is af-

fected by a magnetic field with a global structure. This has been demonstrated

through the derivation of approximate analytical expressions and by numeri-

cal calculations based on exact formulae for particular forms of the magnetic

field. From these calculations, we were able to determine the approximate field

v



strength, ∼ 1050 G, which would lead to the average observed splitting asym-

metries in ` = 1 modes in the DBV GD 358, as given in Winget et al. (1994).

We then attempted to extract the radial variation of the magnetic field from

the variations in the splittings as a function of radial overtone number, using

either a constant field or a locally disordered field, but could not obtain a self-

consistent solution in either case. This implies that either our model of the

equilibrium structure of the star is inadequate, or that the formalism presented

here is too simplistic.
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Chapter 1

Introduction

Of the few astronomical bodies we can examine closely, many exhibit

the phenomenon of a magnetic field. For instance, the Earth, Jupiter, and

the Sun all exhibit measureable fields. The underlying mechanisms by which

these fields are formed and maintained, however, is largely a mystery. It is

quite likely that there is a relationship between the rotation of such objects

and their magnetic fields. Although dynamo theory offers a phenomenological

description of the generation and evolution of magnetic fields, it is not a theory

which is presently derivable from the underlying microphysics. Given this state

of affairs, a new tool is needed which allows us to obtain more information

about the properties of magnetic fields and rotation, not just at the surface,

but within stellar objects.

Asteroseismology is just such a tool. Asteroseismology uses a knowl-

edge of the normal modes in model systems to fit observations of the frequency

spectrum of pulsating stars. Since a normal mode is a property of the system

as a whole, this technique provides information not only about properties of

the star at its surface, but also about its deeper layers. As an example, it is

possible to find the thickness of surface hydrogen or helium layers on white

dwarfs by examining the variations in the period spacings between consecutive

radial overtones. It is our hope that it will similarly be possible to extract
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information about the magnetic fields and rotational curves of such objects.

Our optimism is not without reason. It happens to be the case that,

in many important ways, white dwarfs are very simple objects. There are no

complications from nuclear energy generation, and the convection zones are

small in comparison with those in most other stars. They also have extremely

high surface gravities, which confines motions mainly to nonradial directions.

As a result, their equilibrium configurations are highly spherical. Thus, many

important processes such as pulsation or convection, which are strongly present

in other types of stars, are present at perturbational levels in white dwarfs. This

fact, and the physical and mathematical power which comes with it, makes it

likely that these important problems will first be understood in the context of

white dwarf stars.

For example, our plan is to treat the magnetic field as a non-spherical

perturbation to the spherical symmetry of the white dwarf. As such, it can lift

the degeneracies between modes of the same frequency, much in the same way

that the Zeeman effect lifts the degeneracy between atomic states of the same

energy. The following chapter centers on a discussion of the properties of these

normal modes, since it is through them that the eigenfrequencies are affected.



Chapter 2

General Properties of White Dwarf Oscillations

The particular kind of oscillations which are found to be excited in

white dwarf stars are called ‘g-mode’ oscillations. These are modes in which the

restoring force for each fluid element is gravity. A familiar example is a wave

on the surface of water; if there were no gravity, the crest of the wave would

not be pulled back toward the main body of water. Hence, gravity (in the form

of differences in ‘buoyancy’) supplies the restoring force. On the other hand,

sound waves need only a compressible medium through which to propagate; the

restoring force for a fluid element comes from pressure variations. Modes for

which pressure is the dominant restoring force are therefore called ‘p-modes.’

Since it is the g-modes which are excited to observable amplitudes in white

dwarfs, we will confine our discussion to them in all that follows.

Ignoring such complicating effects as rotation or a magnetic field,

white dwarfs have spherical symmetry. This makes it possible, as in many

problems involving spherical symmetry, to represent the angular dependence

of the eigenfunctions in terms of an expansion in spherical harmonics, Y m
` (θ,φ).

In particular, the displacement vector for the oscillations is given by

~ξ =

(

ξr(r), ξh(r)
∂

∂θ
, ξh(r)

1

sin(θ)

∂

∂φ

)

Y m
` (θ,φ)eiσt, (2.1)

where the first, second, and third components of ~ξ are the r̂, θ̂, and φ̂ compo-

nents, respectively, and σ is the angular frequency of the oscillation (Unno et

3
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al. 1989, equation 13.60). This has the effect of reducing the problem to a

one-dimensional determination of the functions ξr(r) and ξh(r), which are the

amplitudes of the radial and horizontal displacements. The number of nodes

in ξr, denoted by k, when taken together with ` and m form a complete set of

numbers with which to label the modes, i.e., they form a set of ‘good quantum

numbers.’

Since the surface gravities of white dwarfs are so large, it is in general

easier to compress material through horizontal motions than it is to displace

it vertically against gravity. This is especially true near the surface, where

densities are low, so it is not surprising that ξh � ξr near surface. This

argument does not apply to p-modes, since the restoring force is pressure, not

gravity.

The upper two plots in figure 2.1 show ξr and ξh for an ` = 1, k = 13,

mode, with a period of 616 seconds; the model for which the computations

were done is a best fit model of the DB white dwarf GD 358, as described in

Bradley and Winget (1994). The model has a mass of .61 M
�
, a Teff of 24,043

K, and a surface helium layer mass of ∼ 10−6M?. The pulsation code used is a

Runge-Kutte-Fehlberg (RKF) integrator (Kawaler et al. 1985). As can be seen,

ξh/ξr ∼ 1100 near the surface. One consequence of this is that the luminosity

variations are not due to the changing size of the disc, which is a major effect in

Cepheid variables (Robinson et al. 1982). Rather, the compression of a region

of the star’s surface causes its temperature and therefore its luminosity to vary.

An additional point to notice about figure 2.1 is the relative magni-

tude of ξ and its radial derivatives. The lower two plots are of d
dr

(rξ):
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Figure 2.1: The components of ξ and their derivatives versus log(1 − r/R?),
where R? is the radius of the star. The x-axis is such that the surface is on
the left and the center is on the right. It should be noted in these figures
that ξh � ξr near the surface, where by surface we mean the region in which
log(1− r/R?) < −2.
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d

dr
(rξ) ≈ r

d

dr
ξ ≈ r

d
ξ (2.2)

where d is a local scale height for the variation of ξ. We see that the ratio r/d

has a magnitude of ∼ 102–103. Thus, the largest of the four plots is

d

dr
(rξh) ≈ r

d

dr
ξh. (2.3)

We will use this fact later to derive approximate expressions for the perturba-

tions to the eigenfrequencies.

Another important property of g-mode oscillations in white dwarf

stars is that they are localized near the surface, i.e., the eigenfunctions are small

in the core of the star. This can be realized from figure 2.1 by keeping in mind

the logarthmic nature of the x-axis, e.g., log(1− r/R?) = −2 means r = .99R?.

Essentially, this is due to the behavior of the Brunt-Väisälä frequency, denoted

by N . The Brunt-Väisälä frequency is the natural frequency of oscillation

of a displaced, buoyant fluid element (Unno et al. 1989). It is thus a local

frequency for g-mode oscillations; when the the frequency of a g-mode is greater

than the local Brunt-Väisälä frequency the mode is evanescent (‘damped’) in

that region. Since the Brunt-Väisälä frequency becomes very small deep in

the interior of a white dwarf, g-modes are evanescent there and have small

amplitudes.

There is one final point to note about the eigenfunctions in connection

with the magnetic field. In section 4.1, it is shown that the frequency shifts

due to magnetic splitting are most sensitive to the radial derivative of the hor-

izontal component of the eigenfunctions, that is, to d
dr

ξh. In a convection zone,

however, d
dr

ξh drops suddenly due to the sudden drop in the Brunt-Väisälä
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frequency, which becomes negative in the convection zone. This is shown dra-

matically in figure 2.2 for a .6M
�

pure carbon model. From asymptotic theory

we obtain the following relation for the amplitude of ξh (from equation 15.4,

Unno et al. 1989):

ξh ∼ exp

(

−
∫ r

0

N2

g

)

. (2.4)

Thus, as N 2 drops near zero in the convection zone, ξh becomes nearly inde-

pendent of r, so d
dr

ξh ∼ 0.
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Chapter 3

The Perturbation Formalism

To avoid confusion, we should note that there are two senses in which

the word ‘perturbation’ is being used. The first use arises in describing the

oscillations of the star about its equilibrium state, with the assumption that

the amplitude of these oscillations is small. The second use is in our treatment

of the magnetic field as a perturbation, both to the structure of the star and

to its eigenfunctions and eigenfrequencies. In most instances in our discussion,

‘perturbation’ will refer to the latter of these two, since we are treating the

eigenmodes of the star as essentially a solved problem.

The magnetic field affects the structure of the star in the same order

that it affects the eigenfrequencies and eigenfunctions, i.e., it is not in principle

suitable to use the equilibrium quantities in the non-magnetic case in order to

calculate the the effect on the eigenfrequencies. This can be seen by an exam-

ination of the equations which govern the structure and pulsational properties

of a star, equations 3.1 and 3.2, respectively:

0 = −∇Φ− 1

ρ
∇p +

1

4πρ
(∇× ~B)× ~B (3.1)

σ2~ξ = L(~ξ) + B(~ξ) (3.2)

where the operators L(~ξ) and B(~ξ) are defined in Unno et al. (1989). It should

be noted that B(~ξ) is proportional to B2, so that both equations are perturbed

9
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by order B2. This situation may be contrasted with the treatment of rotation

as a perturbation; the perturbation to the eigenfrequencies is linear in Ω due to

the Coriolis term but the perturbation to the equilibrium structure is second

order in Ω due to the centrifugal forces, and so may be neglected in a first order

calculation. This is not necessarily true when treating a magnetic perturbation.

A second complication arises if the magnetic field does not vanish at

the surface of the star. It will dominate the dynamics in the region very near

the surface by virtue of the fact that the magnetic pressure B2/8π will greatly

exceed the gas pressure. In this region, the eigenfunctions will be significantly

affected, and a perturbational approach may not be valid. In the following

sections it will be shown that the preceding difficulties are not in any way

insurmountable for the cases we wish to consider.

3.1 Derivation of Frequency Splitting

We wish to calculate the difference in frequencies between a magnetic

and a nonmagnetic system. The following approach is taken from Goosens et

al. (1976). First, we rewrite equation 3.2 in these two cases:

σ′2~ξ′ = L′(~ξ′) + B(~ξ′) (3.3)

σ2~ξ = L(~ξ), (3.4)

where the primed quantities refer to the magnetic system and the unprimed

quantities refer to the otherwise identical nonmagnetic system. We should also

remember that L is a Hermitian operator. In addition, we are considering

eigenfunctions ~ξ and ~ξ′ which become identical in the limit that the magnetic

field goes to zero.
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Assuming that the frequencies are real, we take the inner product of

~ξ∗ with equation 3.3, subtract from it the inner product of ~ξ′ and the complex

conjugate of equation 3.4, and integrate over the mass of the nonmagnetic

configuration:

(σ′2−σ2)
∫

ρdV ~ξ∗ · ~ξ′ =
∫

ρdV ~ξ∗ ·B(~ξ′)+
∫

ρdV (~ξ∗ · L′(~ξ′)− ~ξ′ · L(~ξ∗)). (3.5)

Since L′ is a function of equilibrium quantities in the magnetic case, we may

write

L′ = L+ δL, (3.6)

where δL is due to the magnetic perturbation. Inserting this relation into

equation 3.5 and using the hermiticity of L, we obtain

(σ′2 − σ2)
∫

ρdV ~ξ∗ · ~ξ′ =
∫

ρdV ~ξ∗ ·B(~ξ′) +
∫

ρdV (~ξ∗ · δL(~ξ′)). (3.7)

This equation embodies the two contributions to the frequency perturbations

previously mentioned: the first term on the right-hand side (RHS) results from

the effect of the magnetic field directly on the oscillations themselves, and the

second is due to the changes in the equilibrium structure of the star. Both of

these terms are quadratic in the magnetic field strength.

3.2 The Magnitude of the Structural Perturbations

We wish to examine the second term on the RHS of equation 3.2,

which is due to perturbations of the equilibrium quantities. The quantity δL
is significant only near the surface of the star, since this is the only region in

which the magnetic pressure can dominate; we therefore expect this integral
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to be dominated by the surface region of the star. What we would like to

show is that, for small magnetic fields, this term is negligible. Intuitively, this

makes sense, at least for extremely small fields, since such a field should have

essentially no effect, even though for it, too, there is a region in which the

magnetic pressure dominates over the gas pressure. As it turns out, this is

easier said than proven.

The problem arises because the region in which the magnetic pressure

dominates is essentially infinite (at least until one worries about the breakdown

of the fluid approximation at very low densities). Thus, it would appear to be

necessary to look at the magnitude of the displacement in this region, in hopes

that it would have a small enough amplitude to be safely ignored. There are two

reasons that this might be appropriate. First, it may simply be that g-modes

become non-propagating in this region. This seems plausible, since the local

oscillation frequency of a displaced element in this region goes to infinity as the

density goes to zero; therefore, there is a large difference between the frequency

with which the wave is attempting to drive oscillations and the natural response

of the medium. In addition, it is possible to think of the different velocities

with which disturbances propagate in the two regions. As the g-mode travels

upward in the atmosphere, it moves from a region of finite velocity to one

with an arbitrarily large velocity (the Alfvén velocity goes to infinity as the

density goes to zero), so we would expect significant reflection to occur at the

‘boundary.’ We have not made a detailed analysis of the dynamics in this

region, so the answers to these questions remain open for now; they will be an

integral part of our future investigations.
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There is another way out of this dilemma; all we need to do is impose

additional conditions on the equilibrium magnetic field, rather than considering

completely general fields. In particular, if we merely assume that in the outer

layers of the star that ∇× ~B = 0 (which is equivalent to saying that there is

no equilibrium current in these regions), then the perturbations to the pressure

and density, and hence L, are identically zero; the term simply goes away. This

will be a valid assumption when the magnetic field is generated deeper within

the star.

As an aside, there is an interesting effect which the magnetic field

may have on the oscillations near the surface of the star, which is discussed in

Biront et al. (1982). The main result of their calculation was that in a star

which in the absence of a magnetic field would have purely radial oscillations,

near the surface the oscillations would be bent by the magnetic field from the

radial direction and would acquire a significant horizontal component. In a

white dwarf, we are already considering nonradial pulsations, but the geome-

try of these pulsations would be greatly altered near the surface by this effect.

This obviously would tend to mix the modes, and could lead to different bright-

ness patterns on the star’s surface than would otherwise be expected from the

spherical harmonic angular dependence of the eigenfunctions. This last effect

would be noticeable if the eigenfunctions became significantly altered at an

optical depth of one or greater.

In figure 3.1, the optical depth to which a given strength magnetic

field has a significant effect is plotted, where we have used the criterion

Pgas = Pmag, (3.8)
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where Pmag ≡ B2/8π. We see that a field of about 6000 G will alter the

dynamics to an optical depth of one. Since we expect the displacements ~ξ in

this region to be nearly parallel to ~B, it would be possible in principle to see

the global structure of the magnetic field. At the very least, modes of different

` would have the same angular dependence, so the geometric factor due to

integrating over the disc of the star would be the same for modes of any `.

It is also possible that a magnetic field could act as a mirror and ‘reflect’ the

eigenmodes before they had a chance to get close enough to the surface to be

observed. This would also be a function of how deep inside the star this occurs,

which would depend on the magnetic field strength. If this mechanism can be

shown to occur, it would set limits on how large a magnetic field we are ever

likely to observe in a pulsating white dwarf.

3.3 The Explicit Form of B(~ξ)

In order to obtain the first order corrections to the eigenfrequencies,

we insert σ′ = σ + ∆σ into equation 3.7 and keep terms of first order, with the

result that

∆σ =
1

2σ
·
∫

ρdV ~ξ∗ ·B(~ξ′)
∫

ρdV ~ξ∗ · ~ξ′
, (3.9)

where we have ignored the structural perturbations, as was discussed in the

previous section. Again, we note that ~ξ′ is the eigenfunction in the magnetic

system, which is nearly equal to ~ξ except near the surface.

The explicit form for ~ξ∗ ·B(~ξ′) is

~ξ∗ ·B(~ξ′) =
1

4πρ
~ξ∗ ·

[

[ρ−1(~ξ · ∇)ρ +∇ · ~ξ] ~B × (∇× ~B)

− [(∇× ~B′)× ~B + (∇× ~B)× ~B′]
]

, (3.10)
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Figure 3.1: The optical depth to which a given magnetic field can significantly
affect the eigenfunctions.

where ~B′ = ∇× (~ξ′ × ~B) is the perturbation to the magnetic field due to the

oscillations (from equation 19.13, Unno et al. 1989). Since we believe that

~ξ ‖ ~B in the outer regions of the star, |~ξ′× ~B| → 0 so | ~B′(~ξ′)| → 0. Again, this

is not the same statement as | ~B′(~ξ)| → 0, because ~ξ and ~ξ′ are different in this

region.

The second term in the integral over ~ξ∗ · B(~ξ′) may be more conve-

niently expressed:

∫

ρdV

(

− 1

4πρ

)

~ξ∗ · ((∇× ~B′)× ~B) =
1

4π

∫

dV (∇× ~B′) · (~ξ∗ × ~B) (3.11)
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=
1

4π

∫

dV ~B′(~ξ′) · ~B′(~ξ)− 1

4π

∫

S
ds n̂ · [(~ξ∗ × ~B)× ~B′].

From previous arguments, the surface term vanishes. In the volume integral,

we may safely replace ~ξ′ with ~ξ, so we find that this term simplifies to

1

4π

∫

dV | ~B′|2, (3.12)

where the radial integration runs from the center to Rc, the point at which the

magnetic pressure B2/(8π) equals the gas pressure. The integral is cut off at

this point since we are assuming that ~B′ approaches zero outside of this region.

We next wish to explore the effects of particular magnetic field geometries.



Chapter 4

Magnetic Field Geometries

For convenience sake we have been suppressing the dependencies of

the eigenfrequencies and eigenfunctions on k, the radial overtone number, and

` and m, the spherical harmonic indices. We will now write ~ξklm when we mean

the mode in the nonmagnetic, spherically symmetric system which is composed

of a single spherical harmonic. ~ξ′klm will represent the mode in the magnetic

system which approaches ~ξklm as the magnetic field is reduced to zero; this

mode will not in general be composed of a single spherical harmonic. With

this closer attention to detail, equation 3.9 becomes

∆σklm =
1

2σkl

·
∫

ρdV ~ξ∗klm ·B(~ξ′klm)
∫

ρdV ~ξ∗klm · ~ξ′klm

. (4.1)

The fact that the unperturbed frequencies, σkl, do not depend on m is simply

due to the assumed spherical symmetry in the nonmagnetic problem. The main

point of these calculations is to find out in what ways a magnetic field removes

this degeneracy with respect to modes with different m but the same `.

4.1 Global Fields

We will first assume that the magnetic field is a global field, so that

it does not vary rapidly at smaller scales. Also, we will assume that ` is not

too large, say ` ≤ 10. This seems reasonable since we have never identified any

17



18

white dwarf pulsations as having ` ≥ 3. The purpose of these assumptions is to

ensure that the radial variation of the displacement vector is more rapid than

the other gradients of ~ξ or any gradients of ~B. Since we have already shown

that the horizontal displacements are much larger than those in the vertical

direction, we in effect are only going to retain terms which are proportional to

( d
dr

ξh)
2 or ξh

d2

dr2 ξh.

Using a vector identity (Jackson 1975), we have

~B′ = ∇× (~ξklm × ~B)

= ~ξklm(∇ · ~B)− ~B(∇ · ~ξklm) + ( ~B · ∇)~ξklm − (~ξklm · ∇) ~B

≈ ( ~B · ∇)~ξklm

≈ Br

d

dr
~ξklm

≈ Br

d

dr
ξh(r) r∇Y m

` (θ,φ), (4.2)

where Br = Br(r, θ, φ) is the radial component of the magnetic field. Using

this form for ~B′, we find that the only term which is proportional to ( d
dr

ξh)
2

comes from the second term in brackets in equation 3.10. Using equation 4.1,

and the recasting of the second term given in equation 3.12, we see that the

expression for the frequency perturbation simplifies to

∆σk`m =
1

8πσkl

·
∫

ρdV | ~B′|2
∫

ρdV |~ξklm|2
. (4.3)

Inserting equation 4.2 and employing the magic of spherical harmon-

ics, we can factor out the angular dependence of ~B in equation 4.3:

∆σk`m =
1

8πσkl

·
∫ Rc

0
r2dr( d

dr
ξh)

2I`m(r)
∫ Rc

0
ρr2dr(ξr

2 + `(` + 1)ξh
2)

, (4.4)
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where Rc is the cutoff radius at which the gas pressure equals the magnetic

pressure, and where Ilm is defined by

I`m(r) ≡
∫

dΩBr
2(r, θ, φ)





∣

∣

∣

∣

∣

∂

∂θ
Y m

` (θ,φ)

∣

∣

∣

∣

∣

2

+
1

sin2 θ

∣

∣

∣

∣

∣

∂

∂φ
Y m

` (θ,φ)

∣

∣

∣

∣

∣

2




=
∫

dΩBr
2(r, θ, φ)

[

`(` + 1) |Y m
` (θ,φ)|2 +

1

2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
|Y m

` (θ,φ)|2
)]

=
∫

dΩ |Y m
` (θ,φ)|2

[

`(` + 1)Br
2(r, θ, φ) +

1

2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
Br

2(r, θ, φ)

)]

(4.5)

From this, we can show that if Br = Br(r), then there would be no m splitting

since the angular integrations over the spherical harmonics would just yield 1.

Such a form for ~B is not possible, however, since it would imply a monopole

term in the expansion of the magnetic field. Consequently, in general Br =

Br(r, θ, φ), so we expect there to be splitting from any global magnetic field.

It is also clear that all the splitting information resides in the function I`m.

We should note that it is not possible to obtain any information about the φ

dependence of Br from this formula, since |Y m
` (θ,φ)| is independent of φ.

It is interesting to examine I`m for particular values of ` and m. For

` = 1, we have

I11 =
3

8π

∫

dΩB2

r (1 + cos2 θ) (4.6)

I10 =
3

4π

∫

dΩB2

r (1− cos2 θ), (4.7)

or writing this more suggestively,

2I11 + I10 =
3

4π

∫

dΩB2

r =
3√
4π

∫

dΩB2

rY
0

0
(4.8)
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I11 − I10 =
3

8π

∫

dΩB2

r (3 cos2 θ − 1) =
3

2
√

5π

∫

dΩB2

rY
0

2
. (4.9)

Note that I11 − I10 corresponds to the frequency splitting between the m = 0

and 1 modes, which is an observable quantity. Another way of thinking of

equation 4.9 is that the splitting of the ` = 1 modes is due to the ‘quadrupole

moment’ of the radial contribution to the magnetic energy density. Again, since

Br must have have some angular dependence, it can be expanded in a series of

spherical harmonics, which will result in non-zero splittings.

If we make the assumption that Br(r, θ, φ) = f(r)Y m′

`′ (θ,φ), then we

obtain

I11 =
3

8π
f2(r)(1 + ∆0) (4.10)

I10 =
3

4π
f2(r)(1−∆0), (4.11)

where

∆0 =
2(`′(`′ + 1)−m′2)− 1

(2`′ − 1)(2`′ + 3)
. (4.12)

Similar formulae to equations 4.8–4.12 could be obtained for I22, I21, and I20,

of course.

If we examine equation 4.5, we see that the splitting only depends on

the radial component of the magnetic field, Br. For both a dipole field and a

constant field in the ẑ direction, Br ∝ cos θ. Hence the m dependence of the

splitting for the two cases (with the above approximations) is identical. We

will proceed by considering only the constant field, since it embodies all of the

results with which we are concerned. It should be noted that by considering

fields which are curl-free, the approximations of ignoring the first and third
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terms in equation 3.10 become exact. Also, there are no structural perturba-

tions since the Lorentz force is zero, so δL is also zero, as was noted in section

3.2.

For this case, the formula for a constant field simplifies to

∆σk`m =
B2A`m

8πσk`

·
∫ Rc

0
r2dr( d

dr
ξh)

2

∫ Rc

0
ρr2dr(ξ2

r + `(` + 1)ξ2
h)

,

where

A`m ≡ `(` + 1)−m2 −∆1,

∆1 =
2`2(` + 1)2 −m2(2`(` + 1) + 3)

(2`− 1)(2` + 3)
.

Inserting two values for `, we find

A`m =







2

5
+ 2

5
m2 ` = 1

18

7
− 2

7
m2 ` = 2

(4.13)

We therefore obtain the interesting result that (in this approximation) the

splitting increases with m for ` = 1 but decreases with m for ` ≥ 2. This

agrees with the behavior seen by Jones et al. (1989) in their numerical results.

Figure 4.1 shows the qualitative features which a magnetic field could

have on a multiplet which was already rotationally split. It is well known that

rotational splitting varies linearly with m within a multiplet (Hansen et al.

1977),

σklm = σkl + mδσrot, (4.14)

whereas, from equation 4.13, we see that the magnetic splitting is proportional

to m2,

σklm = σkl + m2 δσmag. (4.15)
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In the limit that both effects are perturbative, the resulting frequencies are

simply due to the sum of the two effects, i.e.,

σklm = σkl + mδσrot + m2 δσmag. (4.16)

From equation 4.13, we see that δσmag is positive for ` = 1 and negative for

` = 2 or greater. This is the source of the difference in appearance for the ` = 1

and 2 splittings shown in figure 4.1.

4.2 Rapidly Varying, Disordered Fields

By a rapidly varying field we mean a field which has a large gradient,

i.e.,
∣

∣

∣

∣

∇B

B

∣

∣

∣

∣

�
∣

∣

∣

∣

∣

∇f

f

∣

∣

∣

∣

∣

, (4.17)

where f is any other variable under consideration. There is reason to believe

that such a field could be produced by the fluid motions in a convection zone.

Given an initially smooth, global field, the velocities in the convection zone,

due to flux freezing, could twist and deform the field until it had structure on

scales at least as small as the individual convection cells themselves.

We will also assume that, due to processes such as these, the field is

disordered in the sense that different components of ~B are uncorrelated. The

approximations we will use to calculate the disordered nature of ~B are quite

similar to those used to discuss velocity correlation functions in fully developed

turbulence (Landau and Lifshitz 1959). For our purposes, they are

〈BiBj〉 =
δij

3
〈B2〉 (4.18)
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Figure 4.1: The qualitative effect of small frequency perturbations due to a
magnetic field superimposed on rotationally split multiplets. The plots on the
left are for ` = 1, and those on the right are for ` = 2. The upper graphs are
without the magnetic field, and the lower ones are with it. The magnetic plots
have been shifted so that the m = 0 mode has a frequency of 1000 µHz.
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〈∂iBj∂kBl〉 =
〈B2〉
30dm

2
[4δikδjl − δijδkl − δilδjk] (4.19)

〈Bj∂kBl〉 = 0 (4.20)

where dm is a scale length for the variations of the magnetic field, 〈〉 denotes

averaging over small spatial scales, and ∂i means ∂
∂xi

. The reason for the

complicated tensor structure of equation 4.19 is to ensure that the condition

∇ · ~B = 0 is maintained.

We now wish to compute ~B′ neglecting all derivatives except those

which act on the components of ~B. From the second line in equation 4.2 we

therefore obtain

~B′ ≈ (−ξ · ∇) ~B ≈ −ξj~ei∂jBi (4.21)

where the ~ei are the unit vectors, and summation over repeated indices is

implied. Since we are not assuming any particular form for the magnetic field,

we must use the general expression in evaluating 〈~ξ∗ · B(~ξ′)〉, as is given in

equation 3.10. Taking the terms on the RHS of equation 3.10 one at a time,

we note that for the first term, 〈 ~B × (∇ × ~B)〉 = 0, since it is only linear in

derivatives. This leaves the second and third terms. The second term is

〈| ~B′|2〉 ≈ 〈ξj
∗(∂jBi)ξk(∂kBi)〉

= ξj
∗ξk〈(∂jBi)(∂kBi)〉

= |~ξ|2 〈B
2〉

3d2
m

, (4.22)

and the third term evaluates to

〈~ξ · [(∇× ~B)× ~B′]〉 = 〈(∇× ~B) · ( ~B′ × ~ξ)〉

≈ −εijkεilmξmξp〈(∂jBk)(∂pBl)〉
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= |~ξ|2 〈B
2〉

3d2
m

, (4.23)

where εijk is the completely anti-symmetric Levi-Civita tensor. Adding these

contributions and again using ξh � ξr, we obtain an equation identical in form

to equation 4.4:

∆σk`m =
1

8πσkl

·
∫ Rc

0
r2drξ2

hI`m(r)
∫ Rc

0
ρr2dr(ξr

2 + `(` + 1)ξh
2)

, (4.24)

where now we have

I`m(r) ≡
∫

dΩ
2

3d2
m

〈B2〉




∣

∣

∣

∣

∣

∂

∂θ
Y m

` (θ,φ)

∣

∣

∣

∣

∣

2

+
1

sin2 θ

∣

∣

∣

∣

∣

∂

∂φ
Y m

` (θ,φ)

∣

∣

∣

∣

∣

2




=
2

3d2
m

∫

dΩ |Y m
` (θ,φ)|2

[

`(` + 1)〈B2〉+
1

2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
〈B2〉

)]

. (4.25)

Thus, we find that if 〈B2〉 has no angular dependence, then there will

be no splitting of the frequencies as a function of m. If, on the other hand,

〈B2〉 has some global angular dependence, this could lead to a partial lifting of

degeneracy.

As was suggested earlier, such a field might be generated by a twisting

and bending of magnetic field lines which were already present in the convection

zone. If the final fields are assumed to be proportional to the original fields,

then 〈B2〉 will have the same angular dependence as did the original B2. For

example, if the field were initially constant and in the ẑ direction, B2 would be

independent of angle, so no splitting would be produced by the final field. If on

the other hand, the initial field had a dipole dependence, i.e., ~B ∝ 2r̂ cos θ +

θ̂ sin θ, then we would have

〈B2〉 ∝ 4 cos2 θ + sin2 θ

∝ 1 + 3 cos2 θ (4.26)
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which would produce a splitting. More precisely, the constant 1 on the RHS

of equation 4.26 would produce no splitting, but the second term cos2 θ would

produce splitting with an ` and m dependence exactly the same as the constant

or dipole fields of the previous section.

The results of the formalism presented in this chapter are numerically

implemented in the next section. We also attempt an interpretation of the

multiplet splittings in the DBV white dwarf GD 358.



Chapter 5

Numerical Results

5.1 Splitting by a Uniform Field

We can now apply this formalism to an actual model of a star. The

model which is used here is that for GD 358, a DBV white dwarf. The reason for

this choice is that this star has been observed extensively with the Whole Earth

Telescope (WET) and evidence has been found which suggests that this star

may possess a magnetic field (Winget et al. 1994). In fact, these observations

provided much of the motivation for this theoretical investigation.

As mentioned in chapter 2, we used an RKF pulsation code, the main

body of which is described in Kawaler et al. (1985). Modifications were made

which allowed us to calculate the frequency perturbations of modes due to

‘weak’ magnetic fields using the formalism presented in the previous chapter.

The white dwarf model which was used is the one presented in Bradley and

Winnget (1994).

Following the lead of Jones et al. (1989), we computed the splitting

between the m = 1 and m = 0 modes for ` = 1 and 2. Since the magnetic

field is a completely unknown quantity, we picked a simple form for it: a

constant field in the ẑ direction. By specifying the z-axis, we are assuming that

the pulsation and magnetic axes coincide. In this case (as well as the dipole

case), an exact form can be found for the angular integrals in equation 4.3

27
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without making any approximations about the relative sizes of the horizontal

or radial components of ~ξ or its derivatives. These exact expressions were used

in the numerical calculations, although the results deviated very little from the

asymptotic forms found in equation 4.4. The results are shown in figures 5.1

and 5.2. The field was taken to have a magnitude of 105 Gauss.
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Figure 5.1: Period versus the magnitude of the frequency splitting, denoted by
∆f1, between the m = 1 and 0 modes, for the case ` = 1.

As a general rule, modes with longer periods show larger amounts

of splitting than modes with shorter periods. Since for g-modes, longer peri-

ods imply higher radial overtones (higher k), these modes have larger radial
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Figure 5.2: The same as figure 5.1, except for ` = 2. The periodic structure
seen here is a manifestation of mode trapping, i.e., the modes which show an
abnormally high splitting are modes which are more localized in the surface
layers (‘trapped’).

derivatives and hence higher splittings.

5.2 Application to the DBV GD 358

The next step is to use these calculations to interpret the asymmetric

splitting in the data for GD 358 from the May 1990 WET run (Winget et al.

1994). Essentially, for each mode, we can find the magnitude of the constant

magnetic field which would produce the asymmetric splitting in that individual
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mode. Again, we are assuming that the pulsation, magnetic, and rotation axes

coincide. Since each mode may sample a different region of the star, and since

that magnetic field is not likely to actually be constant in space, we expect to

obtain different values of the field for each mode. Since only ` = 1 modes were

unambiguously identified in the data, the modes shown differ only in radial

overtone number. The results of this procedure are displayed in figure 5.3.
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Figure 5.3: The average field ‘felt’ by modes of different k with ` = 1, as
derived from the observed splitting asymmetries in GD 358. The dotted line
shows where the average (∼ 1050 G) of these values lies.

Ideally, figure 5.3 would be a horizontal line, i.e., each mode would be

sampling the same average magnetic field. The fact that it is not means that
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something more complicated must be going on. Since we know that different

modes do not have the same radial dependence, we should investigate whether

a field which varies as a function of radius is able to reproduce the splittings

we observe. As a first step we examine the sensitivity of each of the different

splittings to the different regions in the star, again for a magnetic field of the

form ~B = B(r)ẑ. The results of this are shown in figure 5.4.
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Figure 5.4: The relative sensitivity of each of the different modes to a given
strength magnetic field which is uniform in the ẑ direction.

The fact that the k = 16 mode is much higher than the others means

that it is much more sensitive to being split than the other modes. Put another
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way, it requires much less of a field to be split by the amount which was observed

in the data (it requires a field of less than 150 Gauss). In contrast, the k = 13

mode, which is much less sensitive, requires a field greater than 700 Gauss.

Since both modes appear to sample the same region of the star, it is difficult to

reconcile how such a disparity can occur. The situation is even more dramatic

for the k = 10 and 11 modes. They require fields up to 1800 Gauss, which

should be detected by the higher k modes.

Given this confusing state of affairs, one might suppose that the orig-

inal assumption of a global field is incorrect. We therefore wish to consider

the same question within the context of a small-scale, disordered field. If we

assume that 〈B2〉 has the angular dependence given in equation 4.26, then we

find that the different modes sample the star as shown in figure 5.5.

For this case, the modes have shifted the region which they sample

farther out in the star, closer to the surface. Unfortunately, the k = 16 mode

still dominates over almost all of the region in which the other modes are

sensitive, which leads to the same paradoxical state of affairs as in the constant

field case. It appears that the star is trying to tell us something.

5.3 Validity of Approximations

There are many ways in which the theory presented here is incomplete.

First of all, the dynamical effects of convection are not included. This would

affect the eigenfunctions in the outer mass layer of 10−12M?. Second, adiabatic

eigenfunctions were used instead of nonadiabatic ones. Again, this would affect

the eigenfunctions in the outer 10−12M?. Third, the effect of the magnetic
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Figure 5.5: The relative sensitivity of each of the different modes to a given
strength disordered magnetic field.

field on the eigenfunctions was not included, as in the case of convection; this

assumption is not valid in the surface region of the star, again in approximately

the outer 10−12M?.

In previous pulsational and structural studies of these stars, a region

in a star’s envelope as small as 10−12M? would have virtually no effect at all on

any measurable properties of the star, e.g., its luminosity or eigenfrequencies

of pulsation. This would seem to be a reasonable starting point for investi-

gations involving magnetic fields (or convection, for that matter). However,
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there is no reason that this must be the case; it may be that understanding the

eigenfunctions in this region is the key to interpreting the data from GD 358.

5.4 A Closer Look at Convection

As mentioned in the previous section, the velocities in the convection

zone have an effect on the eigenfunctions and eigenfrequencies which has thus

far not been taken into account. In GD 358, these velocities are on the order

of 105–106 cm/sec, which gives a turnover time on the order of a second. If we

imagine that the convection region is turbulently mixed from top to bottom

(this is quite plausible since the viscosity of the fluid is extremely small), then

this turbulence generates an effective viscosity throughout this region.

If we take the magnitude of the viscosity to be the mixing length

times the convective velocity, we obtain an effective viscosity of ∼ 1010–1011

cm2/sec, for completely efficient mixing. If we add a term ν∇2~v = iνσ∇2~ξ to

the RHS of the momentum equation, we obtain the following equation for the

perturbations (assuming zero magnetic field):

σ2~ξ = L(~ξ)− iνσ∇2~ξ. (5.1)

Applying perturbation theory to this term, we find that the first order frequency

corrections σ1 are

σ1 = −iν

∫

ρdV ~ξ∗ · (∇2~ξ)
∫

ρdV ~ξ∗ · ~ξ
. (5.2)

Since this correction is pure imaginary, it technically does not affect the fre-

quency, although it will affect the width of a peak. To get a real frequency
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perturbation we have to go to second order in ν. If we do, we should find that

σ2 ∼
σ2

1

σ0

, (5.3)

where σ2 is the second order frequency correction and σ0 is the unperturbed

frequency. For a 660 second ` = 1 mode in GD 358, we find that σ2 could be as

large as .6 µHz. While a turbulent viscosity with no angular dependence would

again produce no splitting, an angle dependent ν could produce splittings on

the order of tenths of a µHz, which is exactly the magnitude splitting which

we interpreted as due to a magnetic field. Depending on the details, it would

appear that this effect could either mask or mimic magnetic effects.

However, we must also look at the first order correction, which is

related to the coherence time of the oscillation. Since it is imaginary, it is es-

sentially a damping exponent for this mode. In seconds, it would correspond to

a damping time of 104–105 seconds for completely efficient momentum trans-

port; this would imply that the peak in the fourier transform corresponding

to the frequency of the mode would have a width of ∼ 10–100 µHz. Since all

the peaks have widths on the order of one µHz, this viscous dissipation must

not be occurring. An explanation for this is that the eigenfunctions themselves

are modified by the convective region in such a way that they minimize the

dissipation of energy, i.e., ∇2~ξ is smaller in this region than it would be for the

unperturbed eigenfunctions. In any case, we see that convection, within this

simple framework, cannot account for the asymmetric splittings.

Convection is but one possible phenomenon which we have yet to ex-

plore in detail. There are certainly many other, perhaps more esoteric, physical

effects which we have not explored or even conceived of yet.
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Conclusion

We have presented a general framework in which to calculate fre-

quency shifts due to magnetic perturbations in white dwarf stars. We have

found that a field with a global angular dependence is required in order to

produce splittings between ‘degenerate’ modes. This should not be such a

rare occurrence, however, since in general we expect magnetic fields to have

an angular dependence; the lowest order multipole field observed in nature is

a dipole field. Thus, the frequency splitting asymmetries observed in GD 358

are evidence of a magnetic field with some global structure, if the magnetic

interpretation of the data is indeed correct.

The fact that the attempt to radially reconstruct the magnetic field

was unsuccessful calls into question the interpretation of the splitting asymme-

tries as magnetic in origin. It is quite possible that some hitherto unexplored

effect is responsible. However, it may simply be that the situation is more com-

plicated than expected. After all, these calculations assumed that there were no

velocities present in the unperturbed star; the velocities in the convection zone

were not considered in the equations of oscillation, and the star was assumed

not to be rotating, differentially or otherwise. Even so, it is remarkable that

each triplet showed frequency asymmetries with the correct sign to be caused

by magnetic splitting.

36
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It is possible that our present models of the equilibrium structure of

GD 358 are not completely correct. If GD 358 reached its present evolutionary

state as the result of binary evolution, there may still be traces of its history

which have yet to be erased, that is, its thermal profile may not yet be that of

a white dwarf which has been cooling from the center outward; there may have

been an inward flux of heat from accretion on the surface. Alternatively, it

may be that the perturbations of the magnetic field associated with each mode

interact with the other modes, so that a single mode feels the equilibrium

field plus a field which is due to the fluid motions of the other modes. This

could result in complex, time-dependent behavior, which is observed in the

frequency spectra of many variable white dwarfs. In addition, the non-zero

velocities in the convection zone could play an unknown role in the splitting,

as was discussed in section 5.4.

Although the asymmetric splittings in GD 358 remain a mystery for

now, we are confident that white dwarfs provide the best laboratory for the

study of these phenomena. Only here do we find such simplifications as spheric-

ity to a very high degree due to the large surface gravities, motions mainly in

horizontal rather than radial directions (also due to high surface gravity), very

thin convection zones, and little or no energy generation as a result of (difficult

to calibrate) nuclear processes. Adding to this list the fact that some of these

objects pulsate in nonradial modes, one could not in good conscience ask for a

better astrophysical laboratory.
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