
Stellar Oscillations:
Pulsations of Stars Throughout the H-R diagram

Mike Montgomery

Department of Astronomy and McDonald Observatory,
The University of Texas at Austin

January 15, 2013



Stellar Oscillations

Why study stars in
the first place?

• Distance scales
• Cepheids/RR Lyrae stars
• Planetary Nebulae
• Supernovae

• Ages
• Main-Sequence turnoff
• White Dwarf cooling

• Chemical Evolution
• stellar nucleosynthesis
• ISM enrichment



The Role of the Star in Astrophysics



The Role of the Star in Astrophysics



• Stars as laboratories for fundamental/exotic physics
• General Relativity (binary NS)
• Neutrino Physics (solar neutrinos, white dwarf

cooling, SN neutrinos)
• Degenerate Matter (white dwarfs, neutron stars, red

giant cores)
• convection
• diffusion
• hydrodynamics
• magnetic fields
• rotation

Ok, but why study pulsating stars?



Pulsations give us a differential view of a star:
• not limited to global quantities such as
Teff and log g

• get a dynamic versus a static picture
• can ‘see inside’ the stars, study stellar interiors

(‘helio- and asteroseismology’)
• potential to measure rotation (solid body and

differential)
• find thickness of convection zones



A pulsational H-R
diagram. The gold
dashed curve shows
the ZAMS, and the
solid blue curve
shows the white
dwarf cooling curve.
The classical
instability strip is also
indicated.
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Theory of Stellar Pulsations

• Stellar pulsations are global eigenmodes
Assuming they have “small” amplitudes,
they are …
• coherent fluid motions of the entire star
• sinusoidal in time
• the time-dependent quantities are characterized by

small departures about the equilibrium state of the
star

• the angular dependence is ∝ Y`m(θ, φ), if the
equilibrium model is spherically symmetric



Review: the Vibrating String

∂2Ψ

∂x2
− 1

c2

∂2Ψ

∂t2
= 0

Assuming Ψ(x, t) = eiωtψ(x), this becomes

d2ψ

dx2
− ω2

c2
ψ = 0,

which, together with the boundary conditions
ψ(0) = 0 = ψ(L), has the solution

ψn = A sin(knx),

where
ωn = knc, kn = nπ

L
, n = 1, 2, . . .

Thus, we obtain a discrete set of eigenfrequencies, each
of whose eigenfunctions has a different spatial structure.



Completely analogous to the case of pulsations of a star:
(Montgomery, Metcalfe, & Winget 2003, MNRAS, 344, 657)

vibrating string stellar pulsations

wave equation ←→ fluid equations (e.g., mass
and momentum cons.)

frequencies (ωn) ←→ frequencies (ωn)

vertical displacement ←→
radial displacement
(δr), or pressure (δp)
eigenfunction

1D spatial eigenfunction ←→ 1D in radius × 2D
in θ, φ (Y`m(θ, φ))

The time dependence (eiωt) of both are identical



Stellar Hydrodynamics Equations
• mass conservation

∂ρ

∂t
+∇ · (ρv) = 0

• momentum conservation

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p− ρ∇Φ

• energy conservation

ρ T

(
∂

∂t
+ v · ∇

)
S = ρ εN −∇ · F

• Poisson’s Equation
∇2Φ = 4πGρ

Definitions
ρ density T temperature
v velocity S entropy
p pressure F radiative flux
Φ gravitational

potential
εN nuclear energy

generation rate



Stellar Hydrodynamics Equations
To obtain the equations describing linear pulsations (Unno et al.
1989, pp 87–104)

• perturb all quantities to first order (e.g.,
p′, ρ′,v′ = v = ∂~ξ/∂t)

• assume p′(r, t) = p(r)Y`m(θ, φ) eiωt, and similarly for other
perturbed quantities

• rewrite in terms of, say, ξr and p′

Technical Aside:
We use primes (e.g., p′) to refer to Eulerian perturbations
(perturbations of quantities at a fixed point in space) and delta’s
(δp) to refer to Lagrangian perturbations (evaluated in the frame
of the moving fluid). The relationship between the two is

δp = p′ + ~ξ · ∇p,

where ~ξ is the displacement of the fluid.



In fact, if energy is conserved (“adiabatic”) and the
perturbations to the gravitational potential can be neglected
(“Cowling approximation”), then the resulting 1-D equations may
be written as a single 2nd-order equation (e.g., Gough 1993):

d2

dr2
Ψ(r) +K2Ψ(r) = 0,

where

K2 ≡ ω2 − ω2
c

c2
s

− L2

r2

(
1− N2

ω2

)
,

L2 ≡ `(`+ 1), Ψ ≡ ρ−
1
2 δp

⇒ the problem reduces mathematically to the (non-uniform)
vibrating string problem:

K2 > 0 : solution is oscillatory (propagating)

K2 < 0 : solution is exponential (evanescent, damped)



Spatial structure of the eigenfunctions, in r, θ, and φ
m: number of vertical nodal great circles
`: number of horizontal + vertical nodal circles

n: number of nodes in
radial direction



As a result of this analysis, we discover that there are two
local quantities which are of fundamental importance: the
Lamb frequency, S` = Lcs

r
, and the Brunt-Väisälä

frequency, N . These two quantities have to do with
pressure and gravity, respectively.

Pressure waves:
• perturbations travel at the sound speed which is
c2
s ≡

(
∂P
∂ρ

)
ad

= Γ1P
ρ

• perturbations are longitudinal
⇒ fluid velocity is in the direction of propagation
• disturbances propagate relatively quickly
• examples: sound waves in air or water



The Brunt-Väisälä frequency, N , is a local buoyancy
frequency, which owes its existence to gravity.

Gravity waves:
• perturbations are transverse
⇒ fluid velocity is perpendicular to the direction of

propagation of the wave
• disturbances propagate relatively slowly
• medium must be stratified (non-uniform)



Example: surface water waves

Amplitude particle motion

v =
1

2
(gλ)1/2



Can we calculate N physically?

Fluid element is
displaced from
its equilibrium
position.

Assume
• pressure equilibrium
• no energy exchange (“adiabatic”)

P (r + δr) = P (r) +

(
∂P

∂ρ

)
ad

δρ

⇒ δρ =
ρ

Γ1P

dP

dr
δr



• density difference, ∆ρ, with new surroundings:
∆ρ = ρ(r) + δρ− ρ(r + δr)

=
ρ

Γ1P

dP

dr
δr − dρ

dr
δr

• applying F = ma to this fluid element yields

ρ
d2δr

dt2
= −g∆ρ

= −ρg
(

1

Γ1

d lnP

dr
− d ln ρ

dr

)
δr

d2δr

dt2
= − g

(
1

Γ1

d lnP

dr
− d ln ρ

dr

)
︸ ︷︷ ︸

N2

δr

N2 > 0: fluid element oscillates about equilibrium position
with frequency N

N2 < 0: motion is unstable⇒ convection (Schwarzschild
criterion)



Mode Classification

Depending upon whether pressure or gravity is the dominant
restoring force, a given mode is said to be locally propagating
like a p-mode or a g-mode. This is determined by the frequency
of the mode, ω.

For
d2

dr2
Ψ(r) +K2Ψ(r) = 0,

Gough (1993) showed that K2 could be written as

K2 =
1

ω2c2
(ω2 − ω2

+)(ω2 − ω2
−),

where
ω+ ≈ S` ≡

Lcs
r
, ω− ≈ N



Mode Classification

Whether a mode is locally propagating or evanescent is
determined by its frequency relative to S` and N :

p-modes: ω2 > S2
` , N

2 (“high-frequency”)
K2 > 0, mode is locally “propagating”

g-modes: ω2 < S2
` , N

2 (“low-frequency”)
K2 > 0, mode is locally “propagating”

However, if
min(N2, S2

` ) < ω2 < max(N2, S2
` ),

then
K2 < 0,

and the mode is not locally propagating, and is termed
‘evanescent’, ‘exponential’, or ‘tunneling’.



The JWKB Approximation

d2Ψ

dr2
+K2Ψ = 0

If K2 > 0, then the solution is oscillatory, having some spatial
wavelength, λ ∼ 2π/K. If K varies slowly over scales of order
λ, i.e., dλdr � 1, then an approximate solution of this equation is

Ψ = AK(r)−1/2 sin

(∫ r

K(r′)dr′ + C

)
Although we required dλ

dr � 1, this approximation is frequently
still good even if dλdr ∼ 0.5

The JWKB method is useful in many cases, for instance, for
describing the radial structure of tightly wound spiral arms in
galaxies (Binney & Tremaine 1987) or for problems in quantum
mechanics.



Asymptotic Analysis: The JWKB Approximation

Satisfying the boundary conditions for a mode
propagating between r1 and r2 yields the following
“quantization” condition:∫ r2

r1

drK = nπ.

For high frequencies, K ∼ ω/c, so this leads to

ω =
nπ∫
dr c−1

⇒ frequencies are evenly spaced as a function of radial
overtone number n (just like the vibrating string).



Asymptotic Analysis: The JWKB Approximation

For low frequencies, K ∼ LN/ωr, so this leads to

ω =
L

nπ

∫
dr N/r,

so

P =
2nπ2

L

[∫
dr N/r

]−1

.

⇒ periods are evenly spaced as a function of radial
overtone number n.



Example: propagation diagram for a white dwarf model

p-modes

g-modes
300 sec

center surface



Driving Pulsations: The Adiabatic Assumption

Adiabatic: No heat gain or loss during a pulsation cycle,
i.e., dqdt = 0

One way to quantify this is to compare the energy content
“stored” in the layers in the star above a certain point, ∆qs, with
the energy which passes through these layers in one pulsation
period, ∆ql:

∆qs ∼ CV T ∆Mr

Here ∆Mr ≡M? −Mr is the envelope mass. The energy
passing through this layer in one pulsation period, Π, is

∆ql ∼ Lr Π,

where Lr is the luminosity at radius r.



Driving Pulsations: The Adiabatic Assumption

In order for the adiabatic approximation to be valid we need
∆ql � ∆qs, which implies that

η ≡ Lr Π

CV T ∆Mr
� 1

In general, CV ∼ 109 ergs/g-K, and for solar p-modes,
Π ∼ 300 sec. Using solar values for Lr and Mr we find

• η ∼ 10−16 in the inner regions of the sun

• η ∼ 1 at ∆Mr/M� ∼ 10−10

In other words, η � 1 throughout the vast majority of the Sun.



Driving Pulsations: Mechanisms

Without some mechanism to drive the pulsations, finite
amplitude eigenmodes would not be observed in stars
Two classes of driven modes:
linearly unstable: Mode amplitudes grow exponentially in

time until quenched by nonlinear effects
(“large amplitude pulsators”), e.g., modes
radiatively driven by the “Kappa-gamma
mechanism”.

stochastically driven: Modes are intrinsically stable, but
are dynamically excited (“hit”) by the
convective motions, and then decay away
(“solar-like, low amplitude pulsators”), e.g.,
driven by turbulent motions of the convection
zone.



Linear Driving/Amplification

• A mode which is linearly unstable will increase its
amplitude with time
• infinitesimal perturbations are linearly amplified

(“self-amplified”), grow exponentially
• Example: the harmonic oscillator

ẍ+ γ ẋ+ ω2
0 x = 0

⇒ x(t) = Aeγ t/2 cosω t,

where
ω =

√
ω2

0 − γ2/4.

So amplitude grows in time as eγ t/2.



Linear Driving/Amplification

Several mechanisms exist which can do this:
nuclear driving: “the epsilon mechanism”
radiative driving: “the kappa mechanism”

• In order to drive locally, energy must be flowing into a
region at maximum compression
• Typically, only a few regions of a star can drive a

mode, but the mode is radiatively damped
everywhere else. For a mode to grow, the total
driving has to exceed the total damping



Phasing of the Driving

Driving region: A region which acts to increase the local
amplitude:
Driving⇐⇒ tP (max) > tρ(max)

Damping region: A region which acts to decrease the local
amplitude:
Damping⇐⇒ tP (max) < tρ(max)

To see when this can happen we consider the equation

1

P

d δP

dt
=

Γ1

ρ

d δρ

dt
+
ρ(Γ3 − 1)

P
δ

(
ε− 1

ρ
∇ · F

)
At density maximum, d δρ/dt = 0, so

1

P

d δP

dt
=
ρ(Γ3 − 1)

P
δ

(
ε− 1

ρ
∇ · F

)



Phasing of the Driving

If δ
(
ε− 1

ρ∇ · F
)
> 0 then the pressure is still increasing and we

will have tP (max) > tρ(max). This is the condition for the mass
element to still be gaining energy. Energy gain will lead to a
more forceful expansion, leading to local driving.

If δ
(
ε− 1

ρ∇ · F
)
< 0 then the pressure is decreasing and we

have tP (max) < tρ(max). This is the condition for the mass
element to be losing energy. Energy loss will lead to a less
forceful expansion, leading to local damping.

Of course, if δ
(
ε− 1

ρ∇ · F
)
≈ 0, then tP (max) ≈ tρ(max) and

there is no driving or damping. This is the adiabatic case.



The Kappa-gamma Mechanism

Consider a temperature perturbation δT/T which is
independent of position:

κ1 ≡ κ(ρ1, T1)

κ2 ≡ κ(ρ2, T2)F1

F2

ρ1, T1

ρ2, T2

r1

r2 ≡ r1 + h

In equilibrium, F1 = F2. Now consider perturbations only to the
opacity due to the temperature perturbation. Since

F = − 4ac

3κρ
T 3∇T ∝ 1/κ,

we have δF = −F δκ

κ
= −Fδ lnκ = −F ∂ lnκ

∂ lnT

δT

T



The flux going in minus the flux leaving is

∆F ≡ F1 + δF1 − (F2 + δF2)

= −F δT

T

[(
∂ lnκ

∂ lnT

)
r1

−
(
∂ lnκ

∂ lnT

)
r2

]
= F

δT

T
h

(
d

dr
κT

)
,

where
κT ≡

(
∂ lnκ

∂ lnT

)
ρ

.

Thus, we have local driving if

d

dr
κT > 0

This condition is fulfilled in the outer partial ionization zones of
many stars.



A more careful derivation
(including density
perturbations in the
quasi-adiabatic
approximation) shows that
the condition for local driving
due to the Kappa-gamma
mechanism is actually

d

dr
[κT + κρ/(Γ3 − 1)] > 0,

where Γ3 − 1 ≡
(
∂ lnT
∂ ln ρ

)
S
.



Timescales and Driving
A region which can locally drive modes (e.g., He II partial
ionization) most effectively drives modes whose periods are
close to the thermal timescale of the region:

τthermal ∼
∆MrcV T

Ltot
∼ P (mode period)



Timescales

The thermal timescale τthermal increases with increasing
depth
⇒ longer period modes are driven by deeper layers than

short period modes
In the model shown above, the possibility exists to drive
modes with periods of
∼4 hours, due to He II ionization
∼6 minutes, due to H I ionization

The energy gained by the mode in the driving regions has
to be greater than the radiative damping which it
experiences everywhere else. Thus, the above conditions
are necessary but not sufficient to insure linear instability.



A More Detailed (but still qualitative)
Calculation of κ-γ Driving

ρ T
ds

dt
= ρ ε−∇ · ~F

Again, let’s assume a perturbation with δT/T constant in space.
For a region in the envelope, ε = 0, and let’s qualitatively write
T ds ≈ cV dT/T , so

ρ cV
dT

dt
= −∇ · ~F = −∂Fr

∂r

Ignoring differences between δ and ′, we consider the effect of a
perturbation in δT :

ρ cV
d δT

dt
= −∂ δFr

∂r

Fr ∝ −
∇T 4

κ
⇒ δFr

Fr
= −δκ

κ
+ 4

δT

T



Calculation of κ-γ Driving

So δFr = Fr

(
−δκ
κ

+ 4
δT

T

)
Since Fr is constant in the outer envelope (plane parallel
approximation),

∂ δFr
∂r

= −Fr
∂

∂r

(
δκ

κ

)
δκ

κ
= κT

δT

T
+ κρ

δρ

ρ

Assuming quasi-adiabatic perturbations,

δρ

ρ
=

1

Γ3 − 1

δT

T
, where Γ3 − 1 =

(
∂ lnT

∂ ln ρ

)
s

δκ

κ
=
δT

T

(
κT +

κρ
Γ3 − 1

)



Calculation of κ-γ Driving

ρ cV
d δT

dt
= Fr

δT

T

∂

∂r

(
κT +

κρ
Γ3 − 1

)
d

dt

(
δT

T

)
=

[
Fr

ρ cV T

d

dr

(
κT +

κρ
Γ3 − 1

)](
δT

T

)
Assuming δT/T = Aeγ t, then

γ =
Fr

ρ cV T

d

dr

(
κT +

κρ
Γ3 − 1

)
=

Lr
4πr2 ρ cV T

d

dr

(
κT +

κρ
Γ3 − 1

)
Letting Hp be a pressure scale height, 4πr2HPρ ≈ ∆Mr, so

γ =
Lr

∆Mr cV T

[
HP

d

dr

(
κT +

κρ
Γ3 − 1

)]



Calculation of κ-γ Driving

In terms of the thermal timescale this is

γ = τ−1
th

[
HP

d

dr

(
κT +

κρ
Γ3 − 1

)]
The term in brackets is O(1), although it can be as large as 10.
Thus, the local growth rate can be as large as τ−1

th , and we
again see that

d

dr

(
κT +

κρ
Γ3 − 1

)
> 0

is the criterion for local driving to occur. In practice, this always
occurs in a partial ionization (PI) zone of some element.

Of course, the total growth rate for a mode is summed over the
entire star, which includes driving and damping regions, and it
is typically much smaller than this.



Incidentally, I have saved you from the derivation in Unno et al.
(1989), which is somewhat less transparent:



Which periods are most strongly driven?

The transition region between adiabatic and nonadiabatic for a
mode is by

cV T ∆Mr

LP
∼ 1

Deeper than this (larger ∆Mr) the mode is adiabatic, and higher
than this (smaller ∆Mr) the mode is strongly nonadiabatic.

If the transition region for a given mode lies above the PI zone,
then the oscillation is nearly adiabatic in the PI zone so very
little driving or damping can occur.

If the transition region for a given mode lies below the PI zone,
then energy leaks out of the region too quickly for driving to
occur, i.e., the luminosity is “frozen in.”



Which periods are most strongly driven?

Thus, the modes that are most strongly driven are the ones
whose adiabatic/nonadiabatic transition region lies on top of the
PI zone. The period of these modes is given by

P ∼ τth ≈
cV T∆Mr

L
.

This is a necessary but not sufficient condition for a mode to be
globally driven.



Convective Driving

If we are honest with ourselves
(and we often are not), the κ-γ
mechanism is often less
applicable than one would
imagine.

This is because PI zones are
usually coupled to large rises
in the opacity, and these large
opacities often lead to
convection.

If flux is predominantly
transported by convection, not
radiation, then modulating the
opacity does nothing, so the
κ-γ mechanism cannot
operate.



Convective Driving

Fortunately, work by Brickhill (1991,1992) and Goldreich & Wu
(1999) has shown that a convection zone can naturally drive
pulsations if the convective turnover timescale, tconv, is much
shorter than the pulsation period, P , i.e., tconv � P :

THE ASTROPHYSICAL JOURNAL, 511 :904È915, 1999 February 1
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GRAVITY MODES IN ZZ CETI STARS. I. QUASI-ADIABATIC ANALYSIS OF OVERSTABILITY
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ABSTRACT
We analyze the stability of g-modes in white dwarfs with hydrogen envelopes. All relevant physical

processes take place in the outer layer of hydrogen-rich material, which consists of a radiative layer
overlaid by a convective envelope. The radiative layer contributes to mode damping, because its opacity
decreases upon compression and the amplitude of the Lagrangian pressure perturbation increases
outward. The convective envelope is the seat of mode excitation, because it acts as an insulating blanket
with respect to the perturbed Ñux that enters it from below. A crucial point is that the convective
motions respond to the instantaneous pulsational state. Driving exceeds damping by as much as a factor
of 2 provided where u is the radian frequency of the mode and with being theuq

c
º 1, q

c
B 4qth, qththermal time constant evaluated at the base of the convective envelope. As a white dwarf cools, its con-

vection zone deepens, and lower frequency modes become overstable. However, the deeper convection
zone impedes the passage of Ñux perturbations from the base of the convection zone to the photosphere.
Thus the photometric variation of a mode with constant velocity amplitude decreases. These factors
account for the observed trend that longer period modes are found in cooler DA variables. Overstable
modes have growth rates of order where n is the modeÏs radial order and is the thermalc D 1/(nqu), qutimescale evaluated at the top of the modeÏs cavity. The growth time, c~1, ranges from hours for the
longest period observed modes (P B 20 minutes) to thousands of years for those of shortest period
(P B 2 minutes). The linear growth time probably sets the timescale for variations of mode amplitude
and phase. This is consistent with observations showing that longer period modes are more variable
than shorter period ones. Our investigation conÐrms many results obtained by Brickhill in his pioneering
studies of ZZ Cetis. However, it su†ers from two serious shortcomings. It is based on the quasiadiabatic
approximation that strictly applies only in the limit and it ignores damping associated withuq

c
? 1,

turbulent viscosity in the convection zone. We will remove these shortcomings in future papers.
Subject headings : convection È stars : atmospheres È stars : oscillations È stars : variables : other È

waves

1. INTRODUCTION

ZZ Cetis, also called DA variables (DAVs), are variable
white dwarfs with hydrogen atmospheres. Their photo-
metric variations are associated with nonradial gravity
modes (g-modes) ; for the Ðrst conclusive proof, see Robin-
son, Kepler, & Nather (1983). These stars have shallow
surface convection zones overlying stably stratiÐed inte-
riors. As the result of gravitational settling, di†erent ele-
ments are well separated. With increasing depth, the
composition changes from hydrogen to helium, then in
most cases to a mixture of carbon and oxygen. From center
to surface the luminosity is carried Ðrst by electron conduc-
tion, then by radiative di†usion, and Ðnally by convection.

Our aim is to describe the mechanism responsible for the
overstability of g-modes in ZZ Ceti stars. This topic has
received attention in the past. Initial calculations of over-
stable modes were presented in Dziembowski & Koester
(1981), Dolez & Vauclair (1981), and Winget et al. (1982).
These were based on the assumption that the convective
Ñux does not respond to pulsation ; this is often referred to
as the frozen convection hypothesis. Because hydrogen is
partially ionized in the surface layers of ZZ Ceti stars, these

1 Theoretical Astrophysics, Caltech 130-33, Pasadena, CA 91125, USA;
pmg=gps.caltech.edu.

2 Astronomy Unit, School of Mathematical Sciences, Queen Mary
and WestÐeld College, Mile End Road, London E1 4NS, UK;
Y.Wu=qmw.ac.uk.

workers attributed mode excitation to the i-mechanism. In
so doing, they ignored the fact that the thermal timescale in
the layer of partial ionization is many orders of magnitude
smaller than the periods of the overstable modes. Pesnell
(1987) pointed out that in calculations such as those just
referred to, mode excitation results from the outward decay
of the perturbed radiative Ñux at the bottom of the convec-
tive envelope. He coined the term ““ convective blocking ÏÏ
for this excitation mechanism.3 Although convective block-
ing is responsible for mode excitation in the above cited
references, it does not occur in the convective envelopes of
ZZ Ceti stars. This is because the dynamic timescale for
convective readjustment (i.e., convective turn-over time) in
these stars is much shorter than the g-mode periods. Noting
this, Brickhill (1983, 1990, 1991a, 1991b) assumed that con-
vection responds instantaneously to the pulsational state.
He demonstrated that this leads to a new type of mode
excitation, which he referred to as convective driving. Brick-
hill went on to present the Ðrst physically consistent calcu-
lations of mode overstability, mode visibility, and instability
strip width. Our investigation supports most of his conclu-
sions. Additional support for convective driving is provided
by Gautschy, Ludwig, & Freytag (1996), who found over-
stable modes in calculations in which convection is modeled
by hydrodynamic simulation.

3 This mechanism was described in a general way by Cox & Giuli (1968)
and explained in more detail by Goldreich & Keeley (1977).
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Convective Driving

As a convection zone is heated
from below its entropy rises. This
requires heat/energy, so less
energy is radiated out the top of
the convection zone than enters at
its base.

It is possible (but not easy) to
show that this energy gain occurs
at maximum density during the
pulsations, so this naturally leads
to driving.

This explains the driving in
pulsating white dwarfs (DAs and
DBs), and possibly also Gamma
Doradus and other stars.



Stochastic Driving

Stochastic driving is not the linear driving we have been considering.
It is driving due to the turbulent fluid motions of a star’s convection
zone. The modes are intrinsically damped but excited by a broad
spectrum driving force. This is completely analogous to the damped
harmonic oscillator with time-dependent forcing:

ẍ+ γ ẋ+ ω2
0 x = f(t)

If we do an FT, we find

x(ω) =
f(ω)

ω2
0 − ω2 + iωγ

In terms of power this is

|x(ω)|2 =
|f(ω)|2

(ω2
0 − ω2)

2
+ ω2γ2



Stochastic Driving
Now let’s consider a system with more than one degree of
freedom, the vibrating string (with damping):

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
+
γ

c2

∂ψ

∂t
= g(x) f(t)

The right-hand side (RHS) contains the external forcing. If we
Fourier Transform (FT) this equation with respect to time, we get

∂2ψ̄

∂x2
+
ω2

c2
ψ̄ +

i ω γ

c2
ψ̄ = g(x) f(ω),

where ψ̄(x, ω) = FT [ψ(x, t)], and f(ω) = FT [f(t)]. Our string
has length L, and our boundary conditions for this problem are

ψ(0, t) = 0 and
(
∂ψ(x, t)

∂x

)
x=L

= 0.



Stochastic Driving

We can expand ψ in basis functions of the unperturbed problem:

ψ̄(x, ω) =
∑
n

[An(ω) sin knx+Bn(ω) cos knx]

Our BCs lead to Bn = 0, and kn L = π(n+ 1/2). We further
assume that the driving occurs only at x = L, i.e.,
g(x) = δ(x− L). Substituting this in our equation and
multiplying and integrating by sin knx allows us to solve for Am:

Am(L/2c2)
[
−k2

mc
2 + ω2 + iγω

]
= sin kmLf(ω)

Am(ω) =
2 c2 sin kmL

L

f(ω)

ω2 − ω2
0,m + iγω

where ω0,m ≡ km c.



Stochastic Driving
Thus, we find that ψ at x = L is

ψ̄(L, ω) =
∑
n

c2

2L

f(ω) sin2 knL

ω2 − ω2
0,n + iγω

=
c2

2L
f(ω)

∑
n

1

ω2 − ω2
0,n + iγω

.

The power spectrum of the FT is therefore given by

POWER ≡
∣∣ψ̄(L, ω)

∣∣2
∝ |f(ω)|2

∣∣∣∣∣∑
n

1

ω2 − ω2
0,n + iγω

∣∣∣∣∣
2

≈ |f(ω)|2
∑
n

1∣∣∣ω2 − ω2
0,n + iγω

∣∣∣2



• In the Sun, the driving f(ω) due to the convection zone is a fairly
flat function of ω.

• Although there is power at “all” frequencies (continuous), the
discrete peaks in the power spectrum correspond to the linear
eigenfrequencies of the Sun.



A “real” solar spectrum obtained from Doppler observations:
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Figure 2.14: Power spectrum of solar oscillations, obtained from Doppler ob-
servations in light integrated over the disk of the Sun. The ordinate is nor-
malized to show velocity power per frequency bin. The data were obtained
from six observing stations and span approximately four months. Panel (b)
provides an expanded view of the central part of the frequency range. Here
some modes have been labelled by their degree l, and the large and small
frequency separations ∆ν and δνl [cf. equations (2.40) and (2.41)] have been
indicated. (See Elsworth et al. 1995.)



Good News:
• “All” the modes in a

broad frequency
range, with many
values of `, are
observed to be
excited in the Sun



Bad News:
• The amplitudes are very small. For a given mode, the

flux variations ∆I/I ∼ 10−6, and the velocity
variations are ∼ 15 cm/s

The Sun is so close that these variations are detectable
(both from the ground and from space).

In the last 12 years convincing evidence has been found
for Solar-like oscillations in other stars. The principal
drivers for this progress are the satellite missions COROT
and Kepler.

⇒ solar-like oscillations appear to be a generic feature of
stars with convection zones



Asteroseismology — how does it work?

“Using the observed oscillation frequencies of a star to infer its
interior structure”
• If the structure of our model is “close” to the actual

structure of the star, then the small differences
between the observed frequencies and the model
frequencies give us specific information about the
internal structure of the star

This can be illustrated with a simple physical example:
The Vibrating String.

1
c2
∂2ψ
∂t2

= ∂2ψ
∂x2 ⇒ ωn = nπc/L, n = 1, 2, 3 . . .

Now perturb the “sound speed” c at the point x, δc(x)



location of perturbation δc(x) ∆ωn ≡ ωn+1 − ωn − πc/L

nL

x = 0.17 L

x = 0.16 L

x = 0.15 L

Pattern of ∆ωn vs n gives location of δc(x)

Amplitude of ∆ωn vs n gives magnitude of δc(x)



How this works mathematically…
It can be shown that the string equation,

d2ψ

dx2
+
ω2

c2
ψ = 0,

can be derived from a variational principle for ω2:

ω2[ψ] =

∫ L
0
dx
(
dψ
dx

)2∫ L
0
dx 1

c2
ψ2

.

If ω2[ψ] is an extremum with respect to ψ, then

δω2[ψ] ≡ ω2[ψ + δψ]− ω2[ψ] = 0

∝
∫ L

0

dx δψ

(
d2ψ

dx2
+
ω2

c2
ψ

)
.

For δω2 to be zero for arbitrary variations δψ requires that

⇒ d2ψ

dx2
+
ω2

c2
ψ = 0



Keeping this in mind, consider a small change in c(x), δc(x),
and the effect which it has on the frequencies, ωn:

• produces a small change in ψ, δψ, and in ω, δω

• due to variational principle, δψ does not contribute to the
perturbed integral, to first order in δc, so we can effectively
treat ψ as unchanged

δωn
ωn

=
2

A2L

∫ L

0
dx

(
δc

c

)
ψ2
n

≡
∫ L

0
dx

(
δc

c

)
Kc

≡ 2

L

∫ L

0
dx

(
δc

c

)
sin2(knx)

• Note: Kc is called the kernel of c for the nth eigenfunction



As an example, if

δc = 0.06L c δ(x−x0),

then we find the
following
perturbations to the
frequencies:

n (overtone number)



This is because the
different modes
show different
sensitivities to the
perturbation
because they have
different kernels
(eigenfunctions):



Example: specially chosen bumps for the string

(Montgomery 2005, ASP, 334, 553)

The bump/bead introduces “kinks” into the eigenfunctions.
Sharp bumps produce larger kinks than broader ones.



Example: specially chosen bumps for the string

The bumps also introduce patterns into the frequency
and/or period spacings:

5 10 15 20 25 30 35 40
n (overtone number)

2.5

3.0

3.5

∆
ω
≡
ω
n

+
1−
ω
n

Forward Frequency Differences for the Vibrating String



Example: specially chosen bumps for the string

(Montgomery 2005, ASP, 334, 553)

Three beads introduce three “kinks” into the eigenfunctions. Sharp
bumps produce larger kinks than broader ones. Note the amplitude
difference across the bumps due to partial reflection of the waves.



Example: specially chosen bumps for the string

The pattern in the frequency spacing is a superposition (in
the linear limit) of the patterns introduced by the individual
beads:

5 10 15 20 25 30 35 40
n (overtone number)

2.0

2.5

3.0

3.5

∆
ω
≡
ω
n

+
1−
ω
n

Forward Frequency Differences for the Vibrating String

The perturbations assumed here in δc/c are not in the
small/linear limit.



Why do we care? Because beads on a string
are like bumps in a stellar model

Changes in the
chemical profiles (in a
WD) produce bumps in
the Brunt-Väisälä
frequency. These
bumps produce mode
trapping in exactly they
way that beads on a
string do. This allows us
to learn about the
location and width of
chemical transition
zones in stars.

Φ ≡ “normalized buoyancy radius” ∝
∫ r
0
dr|N |/r



Mode trapping of
eigenfunctions in a WD
model due to the
composition transition
zones.



Mode trapping also affects the period
spacings…

(Córsico, Althaus, Montgomery, García–Berro, & Isern, 2005, A&A, 429, 277)

The open circles/solid lines are the mode trapping seen in a full
WD model and the filled circles/dashed lines are the result of
applying the simple beaded string approach. This shows that
the string analogy captures much of the physics of the full
problem.



The Core/Envelope Symmetry

For the vibrating string, a
bump near one end of the
string produces the same
set of frequencies as a
bump the same distance
from the other end of the
string.
In the same way, a “bump”
in the buoyancy frequency
in the deep interior of a WD
can mimic a bump in its
envelope.
So a bump at Mr ≈ 0.5M?

can mimic a bump at
log(1−Mr/M?) ≈ −5.5

and vice versa.
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(Montgomery, Metcalfe, & Winget 2003)



The Core/Envelope Symmetry
We can map the connection between these “reflection” points,
points in the envelope that produce qualitatively the same
signature as points in the core:
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"Core Mass"



Observations and Time Series Data

Pulsations are observed by time series measurements of
• intensity variations
• radial velocity variations

Only for the case of the Sun can we obtain disc-resolved
measurements of the perturbations.
For other stars, we observe the light integrated over the
observed disc of the star, although the techniques of
Doppler Imaging can be used to provide information about
the spatial structure of the perturbations on the stellar
surface.



Sampling and Aliasing

In trying to recover frequencies from data, it is important
for any gaps in the data to be as small as possible
• This is because data gaps introduce false peaks into

the Fourier transform
• these peaks are called “aliases” of the true frequency
• a priori, one cannot tell which peaks are the “true”

peaks and which are the aliases (especially if several
frequencies are simultaneously present)

For instance, if one observes a star from a single
observatory, one might obtain 8 hours of data per night
with a 16-hour gap until the next night’s observations.



Sampling and Aliasing (cont.)

Taking the Fourier Transform of such a signal, we find that

|A(ω)| =

sin[N tD(ω − ω0)/2]

sin[tD(ω − ω0)/2]
· sin[tN(ω − ω0)/2]

tN(ω − ω0)/2

where, tD is the length of a day in seconds, tN is the length
of time observed per night, ω0 is the angular frequency of
the input signal, and N is the number of nights observed.

The alias structure of a single frequency, sampled in the
same way as the data, is called the “spectral window”, or
just the “window”. The closer this is to a delta function, the
better.



Sampling and Aliasing (cont.)

five 8-hour nights with
16-hour gaps five days continuous data



Sampling and Aliasing (cont.)

Two obvious solutions to this problem:
• observe target continuously from space

• SOHO (Solar Heliospheric Observatory)
• Kepler satellite

• observe target continuously from the ground…using
a network of observatories
• WET (Whole Earth Telescope)
• BISON (Birmingham Solar Oscillations Network)
• GONG (Global Oscillations Network Group)



Spectral window for WET observations of the white dwarf GD 358

(Winget, D. E. et al. 1994, ApJ, 430, 839)



Power spectrum of the white dwarf GD 358

(Winget, D. E. et al. 1994, ApJ, 430, 839)



Helioseismology: Asymptotic relation for p-mode frequencies

A more systematic analysis of the adiabatic equations for the n
and ` dependence of p-mode frequencies gives

νn` '
(
n+

`

2
+

1

4
+ α

)
∆ν︸ ︷︷ ︸

dominant, “large separation”

− (AL2 − δ)∆ν2

νn`︸ ︷︷ ︸
“small separation”

• valid in high-n, low-` limit

∆ν =

[
2

∫ R

0

dr

c

]−1

= inverse sound crossing time

• near degeneracy of modes: νn` ' νn−1,`+2

• deviations from this near degeneracy give us information
about the radial structure of the Sun or other stars





Helioseismology
Helioseismology is the application of exactly these
principles to the oscillations in the Sun:

δωn`
ωn`

=

∫ R

0

[
Kn`
c2
δc2

c2
+Kn`

ρ

δρ

ρ

]
dr

In the above formula, we have defined

δωn` ≡ ωn`(observed)− ωn`(model)
δc2 ≡ c2(Sun)− c2(model)
δρ ≡ ρ(Sun)− ρ(model)

Kn`
c2 ≡ the sampling kernel for c2

for eigenmode {n, `}
Kn`
ρ ≡ the sampling kernel for ρ

for eigenmode {n, `}



Given the large number of observed modes in the Sun (millions,
literally), we can hope to construct “locally optimized kernels” by
looking at the appropriate linear combinations of the frequency
differences, δωn`:∑

n,`

An`
δωn`
ωn`

=

∫ R

0

[
δc2

c2

∑
n,`

An`K
n`
c2︸ ︷︷ ︸

≡Kopt

c2

+
δρ

ρ

∑
n,`

An`K
n`
ρ︸ ︷︷ ︸

≡Kopt
ρ

]
dr

Since the original kernels are oscillatory, such as individual
terms in a Fourier series, by choosing the {Ai} appropriately
we can make the optimized kernels, Kopt

x have any functional
form we choose. In particular, …



Inversions
The An` can be chosen such that
• Kopt

c2 is strongly peaked at r = 0.75R�, say
• Kopt

ρ is negligibly small everywhere (is suppressed)

The result: a helioseismic inversion for the sound speed in the Sun



The most conspicuous feature of this inversion is the
bump at r ∼ 0.65R�, where

δc2 ≡ c2(Sun)− c2(model)

• most likely explanation has to do with He settling
(diffusion)
• the model includes He settling, which enhances the

He concentration in this region
• overshooting of the convection zone may inhibit He

settling
⇒ Sun has lower He concentration than model at this

point
• since c2 ∝ Γ1T/µ, and model has higher µ than Sun,

this produces a positive bump in δc2



Why do inversions work so well for solar
p-modes?

• solar p-modes can be thought of
as sound waves which refract off
the deeper layers

• depth of penetration depends on `

low-`: penetrate deeply, sample
the core

high-`: do not penetrate deeply,
sample only the envelope

⇒ different `’s are very linearly independent

⇒ relatively easy to construct localized kernels



Refraction of p-modes
• p-modes are essentially sound waves
• c2

s ∼ kBT/m
⇒ c2

s is a decreasing function of r
• wavefront is refracted upward

• “mirage” or “hot road” effect



Major Results of Helioseismology

• depth of the convection zone measured
• found to be ∼ 3 times deeper than previously thought

(models in the 1970’s had been “tweaked” to minimize
the Solar neutrino problem)

In addition, Houdek and Gough (2007, MNRAS, 375, 861)
have recently shown that, by looking at second
differences of low-` modes only, one could derive the
depth of the convection zone:



Major Results of Helioseismology (cont.)
(∆2ν ≡ νn+1,` − 2 νn,` + νn−1,`)
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Figure 11. Top: The symbols are second differences ∆2ν, defined
by equation (2), of low-degree (l=0,1,2) eigenfrequencies obtained
from adiabatic pulsation calculations of the central model 0, and
have the same relation to l as in Fig. 1. The solid curve is the
diagnostic D2 determined by equations (21), (30) & (37), whose
eleven parameters αk have been adjusted to fit the data by least
squares. The measure χ2 (mean squared differences) of the over-
all misfit is (53 nHz)2. The dashed curve represents the smooth
contribution (last term in equation (21)). Bottom: Individual con-
tributions of the oscillatory seismic diagnostic. The solid curve
displays the He II contribution, the dotted curve is the He I con-
tribution and the dot-dashed curve is the contribution from the
base of the convection zone.

within the He I ionization zone (in the case of the Sun and
similar stars, this is not the case of He II ionization), and the
evanescence of the eigenfunction above the turning point
must be taken into account. This can be achieved via the
usual Airy-function representation. But for the purpose of
evaluating the integral δγK it is adequate simply to use the
appropriate high-|ψ| sinusoidal or exponential asymptotic
representations either side of the turning point to estimate
the ‘oscillatory’ component of the integrand, which amounts
to setting

[(divξ)2]osc ! − ω3

2γpcr2κ
cos 2ψ , for τ > τt , (34)

with ψ given by equation (27), without the subscripts II,
and κ by equation (26). Despite the vanishing of κ at
τ = τt = (m + 1)/ω, expression (34) is finite at τ = τt
because 2ψ(τt) = π/2. One can treat the evanescent region
similarly, avoiding the singularity and making the represen-
tation continuous at τ = τt by writing

[(divξ)]2osc ! − ω3

2γpcr2|κ| (1 − e2ψ−π/2) , for τ < τt , (35)

Figure 12. Top: The symbols (with error bars computed under
the assumption that the raw frequency errors are independent)
represent second differences ∆2ν, defined by equation (2), of low-
degree solar frequencies with l=0,1,2 and 3, obtained from Bi-
SON (Basu et al. 2006). The effective overall error in the data is
〈σ〉 =5.3 nHz. The solid curve is the diagnostic D2(ν;αk), which
has been fitted to the data in a manner intended to provide an op-
timal estimate of the eleven parameters αk . The values of some
of these fitting parameters are: −δγ/γ|τII $ 0.047, τII $ 819 s,
∆II $ 70 s, and the measure E of the overall misfit is 33 nHz.
The direct measure χ is 2.1; the minimum-χ2 fit of the function
D2 to the data yields χmin = 1.6. The dashed curve represents
the smooth contribution (last term in equation (21)). Bottom: In-
dividual contributions of the seismic diagnostic. The solid curve
displays the He II contribution, the dotted curve is the He I con-
tribution and the dot-dashed curve is the contribution from the

base of the convection zone.

where now

ψ(τ ) ! |κ|τω − (m + 1) ln

„

m + 1

τω
+ |κ|

«

+
π

4
. (36)

Although this expression has the wrong magnitude where
−ψ is large, that region makes very little contribution to
the integral for δγK. We have confirmed numerically that
the formula (35) provides a tolerable approximation. At any
point the integrand for δγK is the product of an exponential
and a slowly varying function F̃ (τ ), say. Both F̃ (τ ) and ψ(τ )
can be Taylor expanded about τ = τ̃I = τI + ω−1εI (εI =
εII) up to the quadratic term, rendering the approximation
asymptotically integrable in closed form. The correction to
the result of assuming F̃ (τ ) = F̃ (τ̃I) and ψ = ψI is small, so
we actually adopt just the leading term.

The cyclic-eigenfrequency contribution to the entire he-
lium glitch then becomes

δγν ! AII

ˆ

ν + 1
2
(m + 1)ν0

˜
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degree solar frequencies with l=0,1,2 and 3, obtained from Bi-
SON (Basu et al. 2006). The effective overall error in the data is
〈σ〉 =5.3 nHz. The solid curve is the diagnostic D2(ν;αk), which
has been fitted to the data in a manner intended to provide an op-
timal estimate of the eleven parameters αk . The values of some
of these fitting parameters are: −δγ/γ|τII $ 0.047, τII $ 819 s,
∆II $ 70 s, and the measure E of the overall misfit is 33 nHz.
The direct measure χ is 2.1; the minimum-χ2 fit of the function
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where now

ψ(τ ) ! |κ|τω − (m + 1) ln

„

m + 1

τω
+ |κ|

«

+
π

4
. (36)

Although this expression has the wrong magnitude where
−ψ is large, that region makes very little contribution to
the integral for δγK. We have confirmed numerically that
the formula (35) provides a tolerable approximation. At any
point the integrand for δγK is the product of an exponential
and a slowly varying function F̃ (τ ), say. Both F̃ (τ ) and ψ(τ )
can be Taylor expanded about τ = τ̃I = τI + ω−1εI (εI =
εII) up to the quadratic term, rendering the approximation
asymptotically integrable in closed form. The correction to
the result of assuming F̃ (τ ) = F̃ (τ̃I) and ψ = ψI is small, so
we actually adopt just the leading term.

The cyclic-eigenfrequency contribution to the entire he-
lium glitch then becomes

δγν ! AII

ˆ

ν + 1
2
(m + 1)ν0

˜

rC/R� ' 0.7



Major Results of Helioseismology (cont.)

• the standard opacities used up to the late 1980’s
were found to be ∼ 3 too small
the effects of metals needed to be added
• this led to the:

OPAL opacity project (Iglesias & Rogers 1996, ApJ,
464, 943)
OP opacity project (Seaton et al. 1994, MNRAS, 266,
805)

• this had effects throughout the H-R diagram:
e.g., with new higher opacities, the pulsations of B
stars could now be explained (bump in opacity due to
partial ionization of metals — Dziembowski &
Pamyatnykh 1993, MNRAS, 262, 204)



Major Results of Helioseismology (cont.)

• detection of differential rotation in the Sun
• rotation profile different from what was theoretically

expected
• discovery of a shear layer near the base of the Solar

convection zone (the “tachocline”)
Both of these effects have to do with rotation.

How does rotation affect a pulsating object?



The Effect of Rotation

• breaks spherical symmetry
• analogous to an H atom in an external magnetic field

• lifts degeneracy of frequencies of modes with the
same {n, `} but different m
• again analogous to an H atom (Zeeman splitting)

• frequencies are perturbed by the non-zero fluid
velocities of the equilibrium state (e.g., to linear order
by the “Coriolis force” and to second order by the
“centrifugal force”)



The Effect of Rotation (cont.)
• if rotation may be treated as a perturbation (“slow

rotation”), then we can calculate kernels which give the
frequency perturbations as an average over the rotation
profile Ω(r, θ):

δωn`m =

∫ R

0
dr

∫ π

0
rdθKn`m(r, θ) Ω(r, θ)

• for uniform (“solid body”) rotation

δωn`m = mβn` Ωsolid

⇒ δω is linearly proportional to m, the azimuthal
quantum number

• for more general (differential) rotation, e.g., Ω = Ω(r, θ), δω
is no longer a linear function of m

⇒ departures from linearity give information about
Ω(r, θ)



Rotational Inversion for the Sun

• radiative interior
rotates rigidly

• convection zone
rotates
differentially

• faster at
equator

• slower at
poles

nHz

radiative convective



• naive models predict “constant rotation on cylinders”
• in contrast, in the convective region, we find that the

rotation rate is mainly a function of latitude, Ω ≈ Ω(θ)
⇒ little radial shear in the convection zone

• nearly rigid rotation of radiative region implies
additional processes are at work
• e.g., a magnetic field could help these layers to rotate

rigidly
• The tachocline: the region of shear between the

rigidly rotating radiative region and the differentially
rotating convective region



The Solar Tachocline

(from Charbonneau et al. 1999, Apj, 527, 445)

• location: r ≈ 0.70R�
• thickness: w ≈ 0.04R�
• prolate in shape:

rt ≈ 0.69R� (equator)
rt ≈ 0.71R� (latitude 60◦)

• likely seat for the Solar dynamo
• magnetic field + shear



Rotation in Red Giants

LETTER
doi:10.1038/nature10612

Fast core rotation in red-giant stars as revealed by
gravity-dominated mixed modes
Paul G. Beck1, Josefina Montalban2, Thomas Kallinger1,3, Joris De Ridder1, Conny Aerts1,4, Rafael A. Garcı́a5, Saskia Hekker6,7,
Marc-Antoine Dupret2, Benoit Mosser8, Patrick Eggenberger9, Dennis Stello10, Yvonne Elsworth7, Søren Frandsen11,
Fabien Carrier1, Michel Hillen1, Michael Gruberbauer12, Jørgen Christensen-Dalsgaard11, Andrea Miglio7, Marica Valentini2,
Timothy R. Bedding10, Hans Kjeldsen11, Forrest R. Girouard13, Jennifer R. Hall13 & Khadeejah A. Ibrahim13

When the core hydrogen is exhausted during stellar evolution, the
central region of a star contracts and the outer envelope expands and
cools, giving rise to a red giant. Convection takes place over much of
the star’s radius. Conservation of angular momentum requires that
the cores of these stars rotate faster than their envelopes; indirect
evidence supports this1,2. Information about the angular-momentum
distribution is inaccessible to direct observations, but it can be
extracted from the effect of rotation on oscillation modes that probe
the stellar interior. Here we report an increasing rotation rate from
the surface of the star to the stellar core in the interiors of red giants,
obtained using the rotational frequency splitting of recently detected
‘mixed modes’3,4. By comparison with theoretical stellar models, we
conclude that the core must rotate at least ten times faster than the
surface. This observational result confirms the theoretical prediction
of a steep gradient in the rotation profile towards the deep stellar
interior1,5,6.

The asteroseismic approach to studying stellar interiors exploits
information from oscillation modes of different radial order n and
angular degree l, which propagate in cavities extending at different
depths7. Stellar rotation lifts the degeneracy of non-radial modes, pro-
ducing a multiplet of (2l 1 1) frequency peaks in the power spectrum for
each mode. The frequency separation between two mode components
of a multiplet is related to the angular velocity and to the properties of
the mode in its propagation region. More information on the exploita-
tion of rotational splitting of modes may be found in the Supplementary
Information. An important new tool comes from mixed modes that
were recently identified in red giants3,4. Stochastically excited solar-like
oscillations in evolved G and K giant stars8 have been well studied in
terms of theory9–12, and the main results are consistent with recent
observations from space-based photometry13,14. Whereas pressure
modes are completely trapped in the outer acoustic cavity, mixed modes
also probe the central regions and carry additional information from the
core region, which is probed by gravity modes. Mixed dipole modes
(l 5 1) appear in the Fourier power spectrum as dense clusters of modes
around those that are best trapped in the acoustic cavity. These clusters,
the components of which contain varying amounts of influence from
pressure and gravity modes, are referred to as ‘dipole forests’.

We present the Fourier spectra of the brightness variations of stars
KIC 8366239 (Fig. 1a), KIC 5356201 (Supplementary Fig. 3a) and KIC
12008916 (Supplementary Fig. 5a), derived from observations with the
Kepler spacecraft. The three spectra show split modes, the spherical
degree of which we identify as l 5 1. These detected multiplets cannot
have been caused by finite mode lifetime effects from mode damping,

because that would not lead to a consistent multiplet appearance over
several orders such as that shown in Fig. 1. The spacings in period
between the multiplet components (Supplementary Fig. 7) are too
small to be attributable to consecutive unsplit mixed modes4 and do
not follow the characteristic frequency pattern of unsplit mixed
modes3. Finally, the projected surface velocity, v sin i, obtained from
ground-based spectroscopy (Table 1), is consistent with the rotational
velocity measured from the frequency splitting of the mixed mode that
predominantly probes the outer layers. We are thus left with rotation
as the only cause of the detected splittings.

The observed rotational splitting is not constant for consecutive
dipole modes, even within a given dipole forest (Fig. 1b and Sup-
plementary Figs 3b and 5b). The lowest splitting is generally present
for the mode at the centre of the dipole forest, which is the mode with
the largest amplitude in the outer layers. Splitting increases for modes
with a larger gravity component, towards the wings of the dipole mode
forest. For KIC 8366239, we find that the average splitting of modes in
the wings of the dipole forests is 1.5 times larger than the mean splitting
of the centre modes of the dipole forests.

We compared the observations (Fig. 1b) with theoretical predictions
for a model representative of KIC 8366239, as defined in the Sup-
plementary Information. The effect of rotation on the oscillation
frequencies can be estimated in terms of a weight function, called a
rotational kernel (Knl). From the kernels, it is shown that at least 60% of
the frequency splitting for the l 5 1 mixed modes with a dominant
gravity component is produced in the central region of the star (Fig. 2).
This substantial core contribution to mixed modes enables us to
investigate the rotational properties of the core region, which was
hitherto not possible for the Sun, owing to a lack of observed modes
that probe the core region (within a radius r , 0.2 R[; ref. 15). The
solar rotational profile is known in great detail for only those regions
probed by pressure-dominated modes16–18. In contrast to these modes
in the wings of the dipole forest, only 30% of the splitting of the centre
mode originates from the central region of the star, whereas the outer
third by mass of the star contributes 50% of the frequency splitting. By
comparing the rotational velocity derived from the splitting of such
pressure-dominated modes with the projected surface velocity from
spectroscopy, we find that the asteroseismic value is systematically
larger. This offset cannot be explained by inclination of the rotation
axis towards the observer alone (Supplementary Tables 1 and 2), but
originates from the contribution of the fast-rotating core (Fig. 2).
Furthermore, internal non-rigid rotation leads to a larger splitting
for modes in the wings of the dipole forest than for centre modes.
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Supplementary Figure 8. The value βnl and mode inertia for a representative stellar model 

of KIC 8366239. a, βnl as a function of mode frequency for oscillation modes of spherical degree 

ℓ=1 and ℓ=2 b, The corresponding mode inertia log(E) of these modes. Modes of degree ℓ=0, 

ℓ=1, ℓ=2 are drawn in green, blue, and red, respectively.  
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ABSTRACT

Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to
probe the rotational behaviour in their deep interiors using the observations of mixed modes.
Aims. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and
fundamental stellar parameters.
Methods. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red
giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution,
allows us to derive global information on stellar evolution.
Results. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are
dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small
increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump
stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with
increasing stellar mass.
Conclusions. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed
rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slow-
down occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured
in white dwarfs.

Key words. stars: oscillations – stars: interiors – stars: rotation – stars: late-type

1. Introduction

The internal structure of red giants bears the history of their evo-
lution. They are therefore seen as key for the understanding of
stellar evolution. They are expected to have a rapidly rotating
core and a slowly rotating envelope (e.g. Sills & Pinsonneault
2000), as a result of internal angular momentum distribution.
Indirect indications of the internal angular momentum are given
by surface-abundance anomalies resulting from the action of
internal transport processes and from the redistribution of an-
gular momentum and chemical elements (Zahn 1992; Talon &
Charbonnel 2008; Maeder 2009; Canto Martins et al. 2011).
Direct measurements of the surface rotation are given by the
measure of v sin i (e.g. Carney et al. 2008). The slow rotation

! Appendices A and B are available in electronic form at
http://www.aanda.org

rate in low-mass white dwarfs (e.g. Kawaler et al. 1999) sug-
gests a spinning down of the rotation during the red giant branch
(RGB) phase. In addition, 3D simulations show non-rigid rota-
tion in the convective envelope of red giants (Brun & Palacios
2009). Different mechanisms for spinning down the core have
been investigated (e.g. Charbonnel & Talon 2005). Rotationally-
induced mixing, amid other angular momentum transport mech-
anisms, is still poorly understood but is known to take place in
stellar interiors. Therefore, a direct measurement of rotation in-
side red giants would give us an unprecedented opportunity to
perform a leap forward on our understanding of angular mo-
mentum transport in stellar interiors (e.g. Lagarde et al. 2012;
Eggenberger et al. 2012).

This is becoming possible with seismology, which provides
us with direct access to measure the internal rotation profile, as
shown by Beck et al. (2012) and Deheuvels et al. (2012a). They
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B. Mosser et al.: Rotation in red giants

Fig. 9. Mean period of core rotation as a function of the asteroseismic stellar radius, in log-log scale. Same symbols and color code as in Fig. 6. The
dotted line indicates a rotation period varying as R2. The dashed (dot-dashed, triple-dot-dashed) line indicates the fit of RGB (clump, secondary
clump) core rotation period. The rectangles in the right side indicate the typical error boxes, as a function of the rotation period.

momentum is certainly transferred from the core to the envelope,
in order to spin down the core. However, a strong differential ro-
tation profile takes place when giants ascend the RGB (Marques
et al. 2012; Goupil et al. 2012).

6.1.2. Clump stars

The extrapolation of the fit reported by Eq. (26) to a typical stel-
lar radius at the red clump shows that cores of clump stars are
rotating six times slower. This slower rotation can be partly ex-
plained by the core radius change occurring when helium fusion
ignition removes the degeneracy in the core. This change, esti-
mated to be less than 50% (Sills & Pinsonneault 2000), can how-
ever not be responsible for an increase of the mean core rotation
period as large as a factor of six. As a consequence, the slower
rotation observed in clump stars indicates that internal angular
momentum has been transferred from the rapidly rotating core
to the slowly rotating envelope (Fig. 9).

6.1.3. Comparison with modeling

The comparison with modeling reinforces this view (Fig. 1 of
Sills & Pinsonneault 2000). Their evolution model assumes a
local conservation of angular momentum in radiative regions and
solid-body rotation in convective regions. It provides values for
the core rotation in a 0.8 M! star of about 50 days on the main
sequence, about 2 days on the RGB at the position of maximum
convection zone depth in mass, and about 7 days in the clump.
This means that, even in a case where the initial rotation on the
main-sequence is slow (certainly much slower than the main-
sequence progenitors of the red giants studied here) and where
angular momentum is massively transferred in order to insure
that convective regions rotate rigidly, the predicted core rotation
periods are much smaller than observed. The expansion of the
convective envelope provides favorable conditions for internal
gravity waves to transfer internal momentum from the core to
the envelope to spin down the core rotation (Zahn et al. 1997;
Mathis 2009). Talon & Charbonnel (2008) have shown that the

conditions are favorable for these waves to operate at the end of
the subgiant branch and during the early-AGB phase. There is
observational evidence that the spinning down should have been
boosted in the upper RGB too.

The comparison of the core rotation evolution on the RGB
and in the clump shows that the angular momentum transfer is
not enough for erasing the differential rotation in clump stars.
The line representing an evolution of 〈Trot〉c with R2 extrapo-
lated to typical main-sequence stellar radii gives a much more
rapid core rotation than the extrapolation from the RGB fit. This
indicates that the interior structure of a red-clump star has to sus-
tain, despite the spinning down of the core rotation, a significant
differential rotation. This conclusion, implicitly based on the as-
sumption of total angular momentum conservation, is reinforced
in case of total spinning down at the tip of the RGB. However,
the large similarities of the values of the core rotation period ob-
served in clump stars, together with an evolution of 〈Trot〉c close
to R2 (Eq. (27)), should imply that a regime is found with a core
rotation of clump stars much more rapid than the envelope rota-
tion but closely linked to it.

6.2. Mass dependence

We have calculated, for different mass ranges [M1,M2], a mean
core rotation period defined by

〈〈Trot〉c〉[M1,M2] =

∑M2
M1
〈Trot〉c R−r

∑M2
M1

R−r
(29)

where r is the exponent given by Eqs. (26) or (27), depending on
the evolutionary status.

This expression allows us to derive a mean value even for
RGB stars, in the mass range [1.2, 1.5 M!] where the RGB star
sample can be considered as unbiased. We do not detect any
mass dependence. The situation changes drastically for clump
stars, with a clear mass dependence: the mean value of 〈Trot〉c is
divided by a factor of about 1.7 from 1 to 2 M!. This reinforces
the view that angular momentum is certainly exchanged in the
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clump) core rotation period. The rectangles in the right side indicate the typical error boxes, as a function of the rotation period.

momentum is certainly transferred from the core to the envelope,
in order to spin down the core. However, a strong differential ro-
tation profile takes place when giants ascend the RGB (Marques
et al. 2012; Goupil et al. 2012).

6.1.2. Clump stars

The extrapolation of the fit reported by Eq. (26) to a typical stel-
lar radius at the red clump shows that cores of clump stars are
rotating six times slower. This slower rotation can be partly ex-
plained by the core radius change occurring when helium fusion
ignition removes the degeneracy in the core. This change, esti-
mated to be less than 50% (Sills & Pinsonneault 2000), can how-
ever not be responsible for an increase of the mean core rotation
period as large as a factor of six. As a consequence, the slower
rotation observed in clump stars indicates that internal angular
momentum has been transferred from the rapidly rotating core
to the slowly rotating envelope (Fig. 9).

6.1.3. Comparison with modeling

The comparison with modeling reinforces this view (Fig. 1 of
Sills & Pinsonneault 2000). Their evolution model assumes a
local conservation of angular momentum in radiative regions and
solid-body rotation in convective regions. It provides values for
the core rotation in a 0.8 M! star of about 50 days on the main
sequence, about 2 days on the RGB at the position of maximum
convection zone depth in mass, and about 7 days in the clump.
This means that, even in a case where the initial rotation on the
main-sequence is slow (certainly much slower than the main-
sequence progenitors of the red giants studied here) and where
angular momentum is massively transferred in order to insure
that convective regions rotate rigidly, the predicted core rotation
periods are much smaller than observed. The expansion of the
convective envelope provides favorable conditions for internal
gravity waves to transfer internal momentum from the core to
the envelope to spin down the core rotation (Zahn et al. 1997;
Mathis 2009). Talon & Charbonnel (2008) have shown that the

conditions are favorable for these waves to operate at the end of
the subgiant branch and during the early-AGB phase. There is
observational evidence that the spinning down should have been
boosted in the upper RGB too.

The comparison of the core rotation evolution on the RGB
and in the clump shows that the angular momentum transfer is
not enough for erasing the differential rotation in clump stars.
The line representing an evolution of 〈Trot〉c with R2 extrapo-
lated to typical main-sequence stellar radii gives a much more
rapid core rotation than the extrapolation from the RGB fit. This
indicates that the interior structure of a red-clump star has to sus-
tain, despite the spinning down of the core rotation, a significant
differential rotation. This conclusion, implicitly based on the as-
sumption of total angular momentum conservation, is reinforced
in case of total spinning down at the tip of the RGB. However,
the large similarities of the values of the core rotation period ob-
served in clump stars, together with an evolution of 〈Trot〉c close
to R2 (Eq. (27)), should imply that a regime is found with a core
rotation of clump stars much more rapid than the envelope rota-
tion but closely linked to it.

6.2. Mass dependence

We have calculated, for different mass ranges [M1,M2], a mean
core rotation period defined by

〈〈Trot〉c〉[M1,M2] =
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〈Trot〉c R−r
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(29)

where r is the exponent given by Eqs. (26) or (27), depending on
the evolutionary status.

This expression allows us to derive a mean value even for
RGB stars, in the mass range [1.2, 1.5 M!] where the RGB star
sample can be considered as unbiased. We do not detect any
mass dependence. The situation changes drastically for clump
stars, with a clear mass dependence: the mean value of 〈Trot〉c is
divided by a factor of about 1.7 from 1 to 2 M!. This reinforces
the view that angular momentum is certainly exchanged in the
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Pulsations of Other Classes of Stars

• white dwarf stars:
• DOV, DBV, and DAV

stars
• sdB pulsators

(EC14026 stars)
• classical Cepheids
• roAp stars
• β Cephei stars
• δ Scuti stars
• γ Doradus stars
• Solar-like pulsators

(Christensen-Dalsgaard 1998)
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White Dwarf Pulsators

• richest pulsators other than the Sun (many modes
simultaneously present)
• many are large amplitude pulsators (δI/I ∼ 0.05 for a

given mode, nonlinear)
• pulsations are due to g-modes, periods of
∼ 200–1000 sec
• pulsations are probably excited by “convective

driving” (Brickhill 1991, Goldreich & Wu 1999), and
possibly also by the kappa mechanism

DAVs: pure H surface layer, driving due to H
ionization zone
DBVs: pure He surface layer, driving due to He
ionization zone (predicted to pulsate by Winget et al.
1983, ApJ, 268, L33 before they were observed)



White Dwarf Pulsators (cont.)
• asymptotic formula for g-mode periods is

Pn` =
2π2n

[`(`+ 1)]1/2

[∫ r2

r1

N

r
dr

]−1

⇒ Periods (not frequencies) are evenly
spaced in n (n = 1, 2, 3…)

• as for p-modes, solid-body rotation splits degenerate
modes into 2 `+ 1 components:

` = 1 −→ 3 distinct frequencies
` = 2 −→ 5 distinct frequencies

• in many cases, asteroseismology of a particular object has
led to an accurate determination of some subset of the
following: the mass, temperature, rotation frequency,
surface hydrogen or helium layer mass, and C/O
abundance ratio in the core



A DOV star: PG 1159-035
• 125 individual frequencies observed
• both ` = 1 and 2 modes observed
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A DOV star: PG 1159-035 (cont.)

(Winget, D. E. et al. 1991, ApJ, 378, 326)



A DOV star: PG 1159-035 (cont.)

• proved beyond a shadow of a doubt that the modes
were g-modes corresponding to ` = 1, 2
• asteroseismologically derived parameters:

mass: 0.586± 0.003 M�
rotation period: 1.38± 0.01 days
magnetic field: . 6000 G



A DBV star: GD 358

10 consecutive ` = 1
radial orders observed,
with n=8–17
(Winget et al. 1994, ApJ, 430, 839)



Power spectrum of the white dwarf GD 358

(Winget, D. E. et al. 1994, ApJ, 430, 839)



GD 358 (cont.)

• asteroseismologically derived parameters
(Bradley & Winget 1994, Winget et al. 1994):

mass: 0.61± 0.03 M�
MHe: 2± 1× 10−6 M?

rotation period: ∼ 0.9–1.6 days
differential rotation
implied

luminosity: 0.05± 0.012L�
distance: 42± 3 pc

• measured parallax for GD 358 is 36± 4 pc
⇒ agrees with asteroseismologically derived distance

However, looking more carefully reveals two classes of
asteroseismological fits…



GD 358 (cont.)

Models with a changing
C/O profile in the core
(Metcalfe 2003)

Models with a uniform core
and a two-tiered helium
profile in the envelope
(Fontaine & Brassard 2002)

[the data are solid lines, filled
circles, models are dashed lines,
open circles]

This can be explained as an example of the “core/envelope”
symmetry in pulsating white dwarfs that we discussed previously.



GD 358 (cont.)

Genetic algorithm fitting techniques have recently been
applied to white dwarf modeling (e.g., Metcalfe et al. 2000, ApJ,
545, 974, Metcalfe, Montgomery, & Kawaler 2003):

• explore possibility of a 3He layer
(Montgomery, Metcalfe, & Winget 2001, ApJ, 548, L53)

• constrain the 12C(α, γ)16O reaction rate
(Metcalfe 2003)

• constrain the mass fraction of oxygen
in the core: XO = 67–76 %
(Metcalfe 2003; Metcalfe, Winget, & Charbonneau 2001, ApJ, 557, 1021)

• constrain neutrino emission rates, compare with
Standard Model of particle physics
(Winget et al. 2004, ApJ, 602, L109)



A DAV: BPM 37093

• White dwarfs predicted
to crystallize as they
cool (Abrikosov 1960,
Kirzhnitz 1960, and Salpeter
1961)

• crystallization delays
cooling, adds ∼ 2 Gyr
to Galactic disk ages
based on white dwarf
cooling

• promise of deriving the
crystallized mass
fraction
asteroseismologically

High mass⇒ crystallized
(Montgomery & Winget 1999, ApJ, 526, 976)



BPM 37093 (cont.)

• BPM 37093 has been extensively observed with the Whole
Earth Telescope (WET)

The effect of the crystallized core is to exclude the pulsations
from it (Montgomery & Winget 1999)

Preliminary results:
BPM 37093 is ∼ 90 % crystallized by mass

(Metcalfe, Montgomery, & Kanaan 2004)

This would be the first “detection” of the crystallization process
in a stellar interior.

As a cross-check of our approach, we will do a similar analysis
for a low-mass star which should be uncrystallized, and we will
check if we do indeed find a best fit having 0% crystallization.



The Classical Cepheids

Yellow giants and
supergiants, radial
pulsators, 1 or 2 modes
excited, periods ∼ 1 – 50
days. This is

• great for
Period-Luminosity
relationship (purely
empirical)

• bad for seismology –
not enough modes!

(Sandage & Tammann 1968)



Subdwarf B/EC 14026 stars

• are Extreme Horizontal Branch (EHB) stars
• recently predicted and then observed to pulsate

(Charpinet et al. 1996, ApJ, 471, L103)
• Teff ∼ 35, 000 K, log g ∼ 5.9

• driving is due to an opacity bump due to metals (in
this case, mainly Fe), as in the β Cephei stars
• gravitational settling and radiative levitation work to

increase the abundance of Fe in regions of the
envelope, enhancing the driving effect



Subdwarf B/EC 14026 stars

Typical lightcurves of
pulsating sdB stars
(Charpinet et al. 2009, AIP Conf.

Proc. 1170, 585)
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FIGURE 5. Typical lightcurves for pulsating sdB stars. The 
upper part (in blue) shows sections of lightcurves obtained for 
four rapid sdB pulsators (the V361 Hya stars) through PMT 
broadband photometry using a uniform sampling of 10 s. The 
lower part (in red) shows lightcurves obtained for four long 
period sdB pulsators (the VI093 Her stars) through CCD R-
band photometry using a nearly constant sampling time of 
- 8 0 s . 

many - if not all - of the sdB stars in that surface gravity, 
effective temperature range seem to develop these grav-
ity mode oscillations. Let us mention that three stars are 
known to show both the g-mode and the j9-mode pulsa-
tions. These hybrid pulsators lie near the red edge of the 
EC 14026 instability strip and the blue edge of the VI093 
Her instability region. The two domains therefore over-
lap. 

of hot subdwarf stars and are responsible for the large 
chemical anomalies observed in their atmosphere, as re-
called in previous sections. 

If, overall, the agreement between models and obser-
vations is excellent within this framework, difficulties 
still persist to explain in detail the observed nonadiabatic 
properties of hot pulsating subdwarfs. Improvements in 
this area are likely to come from a refined treatment of 
the physics involved in driving the oscillations, in partic-
ular concerning microscopic diffusion and atomic data 
for opacity calculations. For instance, beyond iron itself 
which is the main contributor to the opacity bump, the 
role of other opaque elements such as nickel was empha-
sized [29, 28]. Other physical mechanisms potentially 
competing with radiative levitation and gravitational set-
tling, such as weak stellar winds and mixing processes, 
are also likely to influence the driving. For the interested 
reader, more can be found about the driving mechanism 
in hot subdwarf stars in the recent reviews by Charpinet 
et al. [6, 4] and Fontaine et al. [17]. 

ASTEROSEISMIC SOUNDING 

The exploitation of stellar oscillations as probes of the 
structural properties of hot subwarf stars has seen im-
portant progress in recent years, following the very first 
attempt made by Brassard et al. to analyse in detail a 
pulsating sdB star [2]. Thus far, the focus has mostly 
been on rapid EC 14026 pulsators that turn out to be par-
ticularly well suited for detailed asteroseismic studies. 
Meanwhile, the g-mode sdB pulsators and the sdO pul-
sators also possess a high potential for asteroseismology 
that has yet to be exploited. In the next sections, we recall 
the method developed for objective asteroseismic sound-
ing of sdB stars and we summarize the most interesting 
recent achievements in this domain. 

The driving mechanism 

The physical processes responsible for the pulsations 
observed in hot subdwarf stars are well identified. For 
all three classes, a classical K-mechanism involving the 
iron-group elements (and mostly iron itself) through 
the so-called Z-bump structure occurring at a temper-
ature of '-^ 200,000 K in the mean Rosseland opacity 
profile is responsible for the driving of the pulsations 
[14, 13, 20, 18]. For the mechanism to be efficient, how-
ever, it is necessary to enhance well above solar propor-
tions the amount of heavy metals, especially iron, present 
in that Z-bump region [13, 3]. This requirement can be 
naturally fulfilled through mechanisms involving selec-
tive diffusive processes, such as radiative levitation, that 
are known to be efficient in the hot and stable envelope 

Mandatory physics for the stellar models 

The asteroseismic probing of sdB stars requires that 
sufficiently accurate stellar models are computed for a 
meaningful comparison of the theoretical pulsations pe-
riods with those observed in the analyzed star. This re-
quires that the most relevant pieces of physics must be 
implemented in the models. For sdB stars, the role of 
gravitational settling and radiative levitation has been 
shown to be central to understand many of the properties 
of these stars, from their atmospheric chemical composi-
tion to the driving of pulsations. We want to emphasize 
that this fimdamental ingredient must also be considered 
for quantitative seismic analyses. 
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Subdwarf B/EC 14026 stars

(Charpinet et al. 2009, AIP Conf. Proc. 1170, 585)
TABLE 2. Structural parameters from asteroseismology for a sample of 11 /i-mode sdB pulsators. 

' " " " i„„i/f /i/f ^^ References Name Teff logg logMenv/M* 

PG 1047+003 
PG 0014+067 
PG 1219+534 
Feige 48 
PG 1325+101 
EC 20117^014 
PG 0911+456 
BAL 090100001 
PG 1336-018 
EC 09582-1137 
PG 0048+091 

33150±200 
34130±370 
33600 ±370 
29580 ±370 
35050 ±220 
34800 ±2000 
31940 ±220 

28000 ±1200 
32780 ±200 
34806 ±233 
33335±1700 

5.800±0.006 
5.775 ±0.009 
5.807±0.006 
5.437± 0.006 
5.811±0.004 
5.856±0.008 
5.777 ±0.002 
5.383 ±0.004 
5.739± 0.002 
5.788± 0.004 
5.711±0.010 

-3.72±0.11 
-4.32 ±0.23 
-4.25±0.15 
-2.97 ±0.09 
-4.18±0.10 
-4.17±0.08 
-4.69 ±0.07 
-4.89±0.14 
-4.54 ±0.07 
-4.39±0.10 
-4.92 ±0.20 

0.490±0.014 
0.477 ±0.024 
0.457±0.012 
0.460 ±0.008 
0.499±0.011 
0.540 ±0.040 
0.390±0.010 
0.432±0.015 
0.459 ±0.005 
0.485±0.011 
0.447 ±0.027 

[11] 
[10] 
[8] 
[9] 
[V] 
[43] 
[40] 
[46] 
[5] 
[38] 
in prep 

should encourage fiirther efforts in that direction which 
can be twofold: 1) pursuing the analysis of more pulsat-
ing sdB stars with current models and tools to clarify our 
global view of the internal properties of sdB stars, and 
2) improving further the sounding power of asteroseis-
mology applied to these stars. This second objective is 
becoming particularly relevant and can possibly take two 
directions. 

proved opacity calculations (OPAL vs. OP), a treatment 
for possibly competing processes, such as stellar winds, 
meridional circulation, or thermohaline convection [45] 
that could modify the distribution of chemical species in-
side the envelope. The strong constraints imposed by as-
teroseismology should be extremely valuable to explore 
and better handle these phenomena in stellar models. 

Improving the accuracy of the seismic fits 

As recalled in a previous section, the current astero-
seismic fits can reproduce the observed period spectrum 
of a star with a precision that is still significantly lower 
than the accuracy at which the periods can be measured. 
This fact points toward shortcomings in the physical de-
scription implemented in stellar models currently used 
for asteroseismology. Despite these shortcomings, recent 
asteroseismic results have shown that such models are 
precise enough, however, to allow robust determinations 
of the main structural parameters with an already highly 
interesting level of accuracy. However, we expect that 
much more can be achieved by improving further the 
physical description of the star in the models with the 
ultimate goal of providing period fits that reach the pre-
cision of the observations. 

On this venture, current hints suggest to us that the pri-
ority should be given to improve the treatment of diffu-
sive processes and other competing mechanisms that can 
affect the chemical stratification in the stellar envelope, 
i.e., in regions where j9-modes are indeed sensitive to the 
structure of the star This is likely one of the main source 
of uncertainty that can possibly account for the limi-
tations encountered with current asteroseismic models. 
Possible improvements could be a more complete treat-
ment for the radiative levitation, including other species 
contributing significantly to the opacity (such as Ni), im-

Sounding deeper layers with the long period 
g-mode pulsators 

Another interesting prospect is to exploit the long 
period g-mode pulsators (the VI093 Her stars) with the 
same asteroseismic methods. In B subdwarfs, acoustic 
waves are mostly confined in the outermost part of the 
star and do not permit to probe efficiently the deepest 
stellar regions (as shown, for example, by Figure 10, in 
the context of stellar rotation). Gravity modes, for their 
part, propagate much deeper in the star and are therefore 
more sensitive to the structure of these deep regions. 
Hence, the g-mode pulsators could potentially provide 
complementary information on the internal structure and 
dynamics of hot B subdwarf stars. 

Asteroseismology of VI093 Her stars will hopefiilly 
benefit from the advent of space observations. The satel-
lite COROT is programmed to observe a long period g-
mode sdB pulsator in faU 2009 for a continuous, ^^ 20 
day duration coverage. Such pulsators may also be found 
among the many variable stars discovered by this in-
strument. In addition, programs to search and monitor 
long period sdB pulsators with the KEPLER satellite 
have been proposed. Space observations could provide 
the high quality seismic data needed for detailed stud-
ies such as those performed to date for the EC 14026 
stars. Such data have been difficult to obtain from ground 
based campaigns, so far 
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Other Pulsators

roAp stars: “rapidly oscillating Ap stars”
• have magnetic fields and peculiar

chemical abundances
• p-mode oscillators (∼ 5 minute periods)

with the pulsation axis inclined relative to
the magnetic axis
• driving mechanism not yet established

delta Scuti stars:
• ∼ 1.6–2.5M�
• p-mode oscillators, periods of hours
• driven by the standard Kappa mechanism



Other Pulsators (cont.)

Gamma Doradus Stars:
• g-mode oscillators, periods of one to

several days
• probably driven by “convective driving”
• long periods make it difficult to do

asteroseismology
Solar-like stars:

• p-mode oscillators
• stochastically driven (by convection zone)
• periods of several minutes



Observed frequencies in beta Hydri (Bedding et al. 2001, cyan
curve) compared to a scaled solar spectrum (yellow curve)



Electronic copies of these notes (in living color) can be
found at:

www.as.utexas.edu/˜ mikemon/pulsations.pdf

Good luck!


