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Stellar Oscillations

Why study stars in
the first place?

e Distance scales
* Cepheids/RR Lyrae stars
* Planetary Nebulae
* Supernovae
e Ages
* Main-Sequence turnoff
* White Dwarf cooling
e Chemical Evolution
¢ stellar nucleosynthesis
® |ISM enrichment



The Role of the Star in Astrophysics
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Figure 1.1. The role of the star in astrophysics, Almost every subject in
astrophysics is influenced by our ideas about the structure and evolution of
the stars. (From Clayton 1968).



The Role of the Star in Astrophysics
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e Stars as laboratories for fundamental/exotic physics

General Relativity (binary NS)

Neutrino Physics (solar neutrinos, white dwarf
cooling, SN neutrinos)

Degenerate Matter (white dwarfs, neutron stars, red
giant cores)

convection

diffusion

hydrodynamics

magnetic fields

rotation

Ok, but why study pulsating stars?



Pulsations give us a differential view of a star:

e not limited to global quantities such as
Twg and log g

e get a dynamic versus a static picture

® can ‘see inside’ the stars, study stellar interiors
(‘helio- and asteroseismology’)

¢ potential to measure rotation (solid body and
differential)

¢ find thickness of convection zones
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Theory of Stellar Pulsations

e Stellar pulsations are global eigenmodes
Assuming they have “small” amplitudes,
they are ...
* coherent fluid motions of the entire star
® sinusoidal in time
¢ the time-dependent quantities are characterized by
small departures about the equilibrium state of the
star
¢ the angular dependence is « Yy, (0, ¢), if the
equilibrium model is spherically symmetric



Review: the Vibrating String

A N
ox2 o2
Assuming ¥(z,t) = e™')(x), this becomes
d2¢ w2
w2V =0

which, together with the boundary conditions
¥(0) =0 = (L), has the solution

VU, = Asin(k,z),

where

nm
Wy = kne, ky="F, n=12,...

Thus, we obtain a discrete set of eigenfrequencies, each
of whose eigenfunctions has a different spatial structure.



Completely analogous to the case of pulsations of a star:
(Montgomery, Metcalfe, & Winget 2003, MNRAS, 344, 657)

vibrating string

wave equation —
frequencies (w,) —

vertical displacement  +—

1D spatial eigenfunction +—

stellar pulsations

fluid equations (e.g., mass
and momentum cons.)

frequencies (w,)

radial displacement
(6r), or pressure (dp)
eigenfunction

1D in radius x 2D
in0, ¢ (Yon(0,9))

The time dependence (e*“*) of both are identical



Stellar Hydrodynamics Equations
® mass conservation
8p B
5 +V-(pv)=0
® momentum conservation
0
<8t +v- V> v=—-Vp—pVo
® energy conservation
0
pT(at+V V>S:,0€N—V'F

® Poisson’s Equation

V2® = 47Gp
Definitions
p  density T temperature
v velocity S entropy
p  pressure F radiative flux
$  gravitational en  nuclear energy

potential generation rate



Stellar Hydrodynamics Equations

To obtain the equations describing linear pulsations (Unno et al.
1989, pp 87-104)

* perturb all quantities to first order (e.g.,
P, o, v =v=0¢/0t)

e assume p'(r,t) = p(r) Yo (6, ) ¢, and similarly for other
perturbed quantities

* rewrite in terms of, say, & and p’
Technical Aside:
We use primes (e.g., p') to refer to Eulerian perturbations
(perturbations of quantities at a fixed point in space) and delta’s
(6p) to refer to Lagrangian perturbations (evaluated in the frame
of the moving fluid). The relationship between the two is

dp=p +E-Vp,

where 5is the displacement of the fluid.



In fact, if energy is conserved (“adiabatic”) and the
perturbations to the gravitational potential can be neglected
(“Cowling approximation”), then the resulting 1-D equations may
be written as a single 2nd-order equation (e.g., Gough 1993):

d2
72 + K*¥(r) =0,
where ) ) ) )
=t (1),
Cs r w

L2 =0(0+1), \IJEp_% dp

= the problem reduces mathematically to the (non-uniform)
vibrating string problem:

/2 > 0 : solution is oscillatory (propagating)

K? < 0 : solution is exponential (evanescent, damped)



Spatial structure of the eigenfunctions, in r, 6, and ¢
m: number of vertical nodal great circles
/. number of horizontal + vertical nodal circles

: I

n: number of nodes in
radial direction




As a result of this analysis, we discover that there are two
local quantities which are of fundamental importance: the
Lamb frequency, S, = %, and the Brunt-Vaisala
frequency, N. These two quantities have to do with
pressure and gravity, respectively.

Pressure waves:
e perturbations travel at the sound speed which is
2= (6_P> _LP
s\ ad P
e perturbations are longitudinal
= fluid velocity is in the direction of propagation
e disturbances propagate relatively quickly
e examples: sound waves in air or water



The Brunt-Vaisala frequency, N, is a local buoyancy
frequency, which owes its existence to gravity.

Gravity waves:
e perturbations are transverse

= fluid velocity is perpendicular to the direction of
propagation of the wave

e disturbances propagate relatively slowly
* medium must be stratified (non-uniform)



Amplitude particle motion
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Can we calculate N physically?
New Positon ____ % ,,,,,,,,,,,, e

Fluid element is Pir), plr)
displaced from

its equilibrium /
position. y
Qld Position % 6

Figure 17.1. A displaced fluid element in a stratified fluid. The initial level is rp and the new
level is ro + &r.

Fluid Element

Assume
* pressure equilibrium
* no energy exchange (“adiabatic”)

P(r+dr) = P(r)+(ap>ad5p

ap
p dP

5p = P 5
= = vpa



e density difference, Ap, with new surroundings:
Ap = p(r)+bp—p(r+dr)

p dP dp
= — —or
P dr or dr
e applying F' = ma to this fluid element yields
d>or
= —gA
P a2 gap
1 dnP dlnp 5
= - T
P9 F1 dr dr
d>or B 1 dinP dlnp s
a2 Ty dr dr
N2

N? > 0: fluid element oscillates about equilibrium position
with frequency N

N? < 0: motion is unstable = convection (Schwarzschild
criterion)



Mode Classification

Depending upon whether pressure or gravity is the dominant
restoring force, a given mode is said to be locally propagating
like a p-mode or a g-mode. This is determined by the frequency
of the mode, w.

For
d2
dr?

Gough (1993) showed that K2 could be written as

U(r) + K2U(r) =0,

1
K? = 5 (W? — wi)(W? —w?),

where




Mode Classification

Whether a mode is locally propagating or evanescent is
determined by its frequency relative to S, and N:

p-modes: w? > SZ, N2 (“high-frequency”)

K? > 0, mode is locally “propagating”
g-modes: w? < 52, N? (“low-frequency”)

K? > 0, mode is locally “propagating”

However, if
min(N?, S7) < w? < max(N?, S?),
then
K? <0,

and the mode is not locally propagating, and is termed
‘evanescent’, ‘exponential’, or ‘tunneling’.



The JWKB Approximation

d*v

—— + K*¥ =0

dr? +
If K2 > 0, then the solution is oscillatory, having some spatial
wavelength, A ~ 27 /K. If K varies slowly over scales of order

A, e, % < 1, then an approximate solution of this equation is
U =AK(r)"Y?sin (/ K(r")dr' + C)

Although we required % < 1, this approximation is frequently
still good even if 2 ~ 0.5

The JWKB method is useful in many cases, for instance, for
describing the radial structure of tightly wound spiral arms in
galaxies (Binney & Tremaine 1987) or for problems in quantum
mechanics.



Asymptotic Analysis: The JWKB Approximation

Satisfying the boundary conditions for a mode
propagating between r; and r;, yields the following
“quantization” condition:

T2
/ dr K =nm.

For high frequencies, K ~ w/c, so this leads to

nm

- fdrc—l

0y

= frequencies are evenly spaced as a function of radial
overtone number n (just like the vibrating string).



Asymptotic Analysis: The JWKB Approximation

For low frequencies, K ~ LN /wr, so this leads to

L
w=— [ dr N/r,
nm

P= 2”;2 [/drN/rr.

= periods are evenly spaced as a function of radial
overtone number n.

SO




Example: propagation diagram for a white dwarf model
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Driving Pulsations: The Adiabatic Assumption

Adiabatic: No heat gain or loss during a pulsation cycle,

i.e., % =0

One way to quantify this is to compare the energy content
“stored” in the layers in the star above a certain point, Ag,, with
the energy which passes through these layers in one pulsation
period, Ag;:

Ags ~ Cy T AM,

Here AM, = M, — M, is the envelope mass. The energy
passing through this layer in one pulsation period, 11, is

AQZ ~ L, H7

where L, is the luminosity at radius r.



Driving Pulsations: The Adiabatic Assumption

In order for the adiabatic approximation to be valid we need
Aq; < Ags, Which implies that

L, 11

[ 1
CvTAM, S

Ui

In general, Cy ~ 10° ergs/g-K, and for solar p-modes,
IT ~ 300sec. Using solar values for L,. and M, we find

* 1 ~ 1071¢ in the inner regions of the sun
°* n~1latAM,/Mg~ 10710

In other words, n < 1 throughout the vast majority of the Sun.



Driving Pulsations: Mechanisms

Without some mechanism to drive the pulsations, finite
amplitude eigenmodes would not be observed in stars
Two classes of driven modes:

linearly unstable: Mode amplitudes grow exponentially in
time until quenched by nonlinear effects
(“large amplitude pulsators”), e.g., modes
radiatively driven by the “Kappa-gamma
mechanism”.

stochastically driven: Modes are intrinsically stable, but
are dynamically excited (“hit”) by the
convective motions, and then decay away
(“solar-like, low amplitude pulsators”), e.g.,
driven by turbulent motions of the convection
zone.



Linear Driving/Amplification

* A mode which is linearly unstable will increase its
amplitude with time

¢ infinitesimal perturbations are linearly amplified
(“self-amplified”), grow exponentially
* Example: the harmonic oscillator

i+yt+wiz=0
= z(t)=Ae"?coswit,

w=1/wd —2/4.

So amplitude grows in time as e7*/2.

where



Linear Driving/Amplification

Several mechanisms exist which can do this:
nuclear driving: “the epsilon mechanism”
radiative driving: “the kappa mechanism”
* In order to drive locally, energy must be flowing into a
region at maximum compression

e Typically, only a few regions of a star can drive a
mode, but the mode is radiatively damped
everywhere else. For a mode to grow, the total
driving has to exceed the total damping



Phasing of the Driving

Driving region: A region which acts to increase the local
amplitude:
Driving < tP(max) > p(max)

Damping region: A region which acts to decrease the local
amplitude:
Damping <= tp(max) < tp(max)

To see when this can happen we consider the equation

1déP Fl d(Sp p(r3 - 1) 1
il -1 Sle—=-vV.-F
Pt pdt P =V

At density maximum, dép/dt = 0, so

1d6P  p(Ts—1) 1
g 5 e pV F




Phasing of the Driving

If & <e — %V : F) > 0 then the pressure is still increasing and we

will have tp(max) > tymax)- This is the condition for the mass
element to still be gaining energy. Energy gain will lead to a
more forceful expansion, leading to local driving.

If 6 (e — %V : F) < 0 then the pressure is decreasing and we

have ¢ p(max) < tpmax)- This is the condition for the mass
element to be losing energy. Energy loss will lead to a less
forceful expansion, leading to local damping.

Of course, if § (e — %V : F) ~ 0, then ¢ p(max) ~ tp(max) and
there is no driving or damping. This is the adiabatic case.



The Kappa-gamma Mechanism

Consider a temperature perturbation §7°/T which is
independent of position:

/Fz-'\
nEr+h F, @ =Ky 1) P2 Ty

n k= k(pp, ) ~pi T

In equilibrium, Fy} = F». Now consider perturbations only to the
opacity due to the temperature perturbation. Since
4ac

F=——"T3VTx1
3np VT x 1/k,

0K Olnk 6T
we have 0F = —F — = —Fflnk = —F —
" e omT T




The flux going in minus the flux leaving is

AF

F1+5F1—(F2+(5F2)
B —F(S—T Olnk B Olnk
B T [\0lmT /), \0IT),
oT d
= F?h (d’rK/T>’
_ (O0lnk
"r=\omt)

Thus, we have local driving if

where

d
— 0
dr wT >

This condition is fulfilled in the outer partial ionization zones of
many stars.



M=1.65M,, T,=7000K, Log L/L,=0.9871, Log g=4.00

A more careful derivation O;; | | | | ]
(including density oef ]
perturbations in the 04f Foon/ Fiotal ]
quasi-adiabatic 3 ]
approximation) shows that N ‘ | ==
the condition for local driving B E
due to the Kappa-gamma ob log K E
mechanism is actually ik i
1B H 1 1 1 e
d 10F ]
o [kr + £,/ (Ts — 1)] > 0, 5k Kyt /(T 1) ]
oF ]

where I'; — 1 = (%111111:;)5 : I 55 5 5 s



Timescales and Driving

A region which can locally drive modes (e.g., He |l partial
ionization) most effectively drives modes whose periods are
close to the thermal timescale of the region:

AM,cyT
Tthermal ™~ #Ctv ~ P (mode period)
O

M=1.65M,, T, =7000K, Log L/L,=0.9871, Log g=4.00
I I e e s B A I

v
(=}
IS
T
240 min
6 min

15 [ e
10; ﬁ
| /\Mé E




Timescales

The thermal timescale 7i1,..ma iNCreases with increasing
depth

= longer period modes are driven by deeper layers than
short period modes
In the model shown above, the possibility exists to drive
modes with periods of
~ 4 hours, due to He Il ionization
~ 6 minutes, due to H | ionization
The energy gained by the mode in the driving regions has
to be greater than the radiative damping which it
experiences everywhere else. Thus, the above conditions
are necessary but not sufficient to insure linear instability.



A More Detailed (but still qualitative)

Calculation of k- Driving

d _
pTd—i:pe—V'F

Again, let’s assume a perturbation with 67°/T" constant in space.
For a region in the envelope, ¢ = 0, and let’s qualitatively write

Tds~cydl/T, so

dT - oF,
e v N 7 B
pev dt v or

Ignoring differences between § and’, we consider the effect of a

perturbation in §7":

CddT__@éFr
pvdt_ or
T4 F,

PR £ S
K F



Calculation of k- Driving

So OF,=F, (— + 4)
K
Since F; is constant in the outer envelope (plane parallel

approximation),
doF, P 0 (oK
o " "or\ sk

0K 5T+ op
A R R
K T -

Assuming quasi-adiabatic perturbations,

5p 1 6T oI T
— = — h Py —1=
p Ts—1T" where 1 <81np)s

ok oT n Kp
ok _ ol (.
kT T, -1




Calculation of k- Driving
déT 6T
pev—0 =

— 2 KT + i
dt T oor \T T Ts—1
d 6T F, i 5£
dt pey T dr Fg -1 T
Assuming 5T/T = AeYt, then
_ Fod — Kp
v= pey T dr T I's—1
— # i K - kp
 dar2pey T dr T I's—1
Letting H,, be a pressure scale height, 4mr?Hpp ~ AM,., SO

L d K
="  |Hp— P
7 MWWT[PW<W+R—J}




Calculation of k- Driving

In terms of the thermal timescale this is

d K
-1 o
= Hp —
v Tth |: Pd’l” <ET+F3—1):|

The term in brackets is O(1), although it can be as large as 10.
Thus, the local growth rate can be as large as 7,,', and we

again see that
d Kp
ar (*”"T+r3_1> 0

is the criterion for local driving to occur. In practice, this always
occurs in a partial ionization (Pl) zone of some element.

Of course, the total growth rate for a mode is summed over the
entire star, which includes driving and damping regions, and it
is typically much smaller than this.



Incidentally, | have saved you from the derivation in Unno et al.
(1989), which is somewhat less transparent:




Which periods are most strongly driven?

The transition region between adiabatic and nonadiabatic for a

mode is by
cy T AMT

LP
Deeper than this (larger AM,) the mode is adiabatic, and higher
than this (smaller AM,) the mode is strongly nonadiabatic.

1

If the transition region for a given mode lies above the Pl zone,
then the oscillation is nearly adiabatic in the Pl zone so very
little driving or damping can occur.

If the transition region for a given mode lies below the Pl zone,
then energy leaks out of the region too quickly for driving to
occur, i.e., the luminosity is “frozen in.”



Which periods are most strongly driven?

Thus, the modes that are most strongly driven are the ones
whose adiabatic/nonadiabatic transition region lies on top of the

Pl zone. The period of these modes is given by
cyTAM,
P ~ Tth ~ VT.

This is a necessary but not sufficient condition for a mode to be
globally driven.



Convective Driving

M=1.85M,, T,,=7000K, Log L/L,=0.9871, Log g=4.00
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Convective Driving

Fortunately, work by Brickhill (1991,1992) and Goldreich & Wu
(1999) has shown that a convection zone can naturally drive
pulsations if the convective turnover timescale, t.ony, is much
shorter than the pulsation period, P, i.e., tcony < P:

THE ASTROPHYSICAL JOURNAL, 511:904-915, 1999 February 1
©1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

GRAVITY MODES IN ZZ CETI STARS. 1. QUASI-ADIABATIC ANALYSIS OF OVERSTABILITY

PETER GOLDREICH' AND YANQIN Wu'!+2
Received 1998 April 28; accepted 1998 September 3

ABSTRACT

We analyze the stability of g-modes in white dwarfs with hydrogen envelopes. All relevant physical
processes take place in the outer layer of hydrogen-rich material, which consists of a radiative layer
overlaid by a convective envelope. The radiative layer contributes to mode damping, because its opacity
decreases upon compression and the amplitude of the Lagrangian pressure perturbation increases
outward. The convective envelope is the seat of mode excitation, because it acts as an insulating blanket
with respect to the perturbed flux that enters it from below. A crucial point is that the convective
motions respond to the instantaneous pulsational state. Driving exceeds damping by as much as a factor
of 2 provided wt, > 1, where w is the radian frequency of the mode and 7, ~ 4t,,, with 7, being the
thermal time constant evaluated at the base of the convective envelope. As a white dwarf cools, its con-



Convective Driving

M=0.600 M,, log g=8.000, 1=2.000 Hp (MLT)

As a convection zone is heated — ‘
from below its entropy rises. This
requires heat/energy, so less
energy is radiated out the top of
the convection zone than enters at
its base.

It is possible (but not easy) to
show that this energy gain occurs
at maximum density during the
pulsations, so this naturally leads
to driving.

s (k;/m,)

This explains the driving in
pulsating white dwarfs (DAs and
DBs), and possibly also Gamma
Doradus and other stars.




Stochastic Driving

Stochastic driving is not the linear driving we have been considering.
It is driving due to the turbulent fluid motions of a star’s convection
zone. The modes are intrinsically damped but excited by a broad
spectrum driving force. This is completely analogous to the damped
harmonic oscillator with time-dependent forcing:

Py +wir=f(t)
If we do an FT, we find

o) = — 1

R
wh — w? +wy

In terms of power this is

o)t = P

(wg - w2)2 + w242




Stochastic Driving

Now let’s consider a system with more than one degree of
freedom, the vibrating string (with damping):

0%  10%) Oy

a2 @oe T I
The right-hand side (RHS) contains the external forcing. If we
Fourier Transform (FT) this equation with respect to time, we get

62

a—f + = w +
where ¢(z,w) = FT[¢(z,t)], and f(w) = FT[f(t)]. Our string
has length L, and our boundary conditions for this problem are

¥(0,t) =0 and (WL:L =0.

zw’y

Y = g(x) fw),

X



Stochastic Driving

We can expand ¢ in basis functions of the unperturbed problem:

Yz, w) = Z [Ap(w) sink,x + By (w) cos knz]

n

Our BCs lead to B,, =0, and k,, L = n(n + 1/2). We further
assume that the driving occurs only at x = L, i.e.,

g(x) = 6(x — L). Substituting this in our equation and
multiplying and integrating by sin k,,z allows us to solve for A,,:

An(L)26%) [—k2¢* + w? + iqw] = sinky, L f(w)

267 sinky, L f(w)
B L w? — w&m + iyw

A (w)

where wo m = kn, c.



Stochastic Driving
Thus, we find that ¢ at z = L is

2 2
- ¢ f(w) sin®k, L
Lo = S 5
Y(L,w) ZQL w2—w§7n+i’yw
1

(2%% + iyw '

n

02
= if(w)zwg_w

n

The power spectrum of the FT is therefore given by

POWER = |{(L,w)|’

[f (@)l

K

1
Z w? — W(Q),n + iyw

n

¢
=
S
o
(]
—
—



¢ In the Sun, the driving f(w) due to the convection zone is a fairly
flat function of w.

e Although there is power at “all” frequencies (continuous), the
discrete peaks in the power spectrum correspond to the linear
eigenfrequencies of the Sun.
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A “real” solar spectrum obtained from Doppler observations:
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MDI Medium—! Power Spectrum

Good News: R

e “All” the modes in a .
st ?
broad frequency E 5]
range, with many £
values of ¢, are et

observed to be
excited in the Sun
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angular degree, [



Bad News:

e The amplitudes are very small. For a given mode, the
flux variations AI/I ~ 1079, and the velocity
variations are ~ 15 cm/s

The Sun is so close that these variations are detectable
(both from the ground and from space).

In the last 12 years convincing evidence has been found
for Solar-like oscillations in other stars. The principal
drivers for this progress are the satellite missions COROT
and Kepler.

= solar-like oscillations appear to be a generic feature of
stars with convection zones



Asteroseismology — how does it work?

“Using the observed oscillation frequencies of a star to infer its
interior structure”

e |f the structure of our model is “close” to the actual
structure of the star, then the small differences
between the observed frequencies and the model
frequencies give us specific information about the
internal structure of the star

This can be illustrated with a simple physical example:
The Vibrating String.

1% _ 0%
2ot Ox?

Now perturb the “sound speed” ¢ at the point z, dc(x)

= w,=nnc/L, n=1,23...



location of perturbation de(x)

Awp = wnt

S| S| C
E § 0.01
S § Q 4 oo 00000 °
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§ 0ootfF ' ‘ ‘
l C ° o 9
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§ fo® .
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0.01F
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Pattern of Aw,, vs n gives location of dc(x)
Amplitude of Aw,, vs n gives magnitude of dc(z)




How this works mathematically...

It can be shown that the string equation,
d%/}
dx 1.2
can be derived from a varlatlonal principle for w?:
L dip\ 2
_ Jo dx (%)
L 1 '
fo dx c_2w2
If w?[¢)] is an extremum with respect to ¢, then

dw?[y] = W[ + 0Y] — W [P] = 0

o</0 dx(w(dQ—w—F 1/))

For jw? to be zero for arbitrary variations 6+ requires that

+2 ¢—o

w?[)]

= =0
xr C



Keeping this in mind, consider a small change in c¢(x), dc(z),
and the effect which it has on the frequencies, w;,:

e produces a small change in v, 6, and in w, dw

* due to variational principle, 1 does not contribute to the
perturbed integral, to first order in d¢, so we can effectively
treat ¢ as unchanged

dwn, 2 L oc\ o
o~ AL /0 d () ¥n
L
/ dz <60> K.
0 C
L
2/0 dx (5;) sin?(k,x)

* Note: K. is called the kernel of ¢ for the n'" eigenfunction
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This is because the
different modes
show different
sensitivities to the
perturbation
because they have
different kernels
(eigenfunctions):




Example: specially chosen bumps for the string
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(Montgomery 2005, ASP, 334, 553)

The bump/bead introduces “kinks” into the eigenfunctions.
Sharp bumps produce larger kinks than broader ones.



Example: specially chosen bumps for the string

The bumps also introduce patterns into the frequency
and/or period spacings:

Forward Frequency Differences for the Vibrating String

5 10 15 20 25 30 35 40

n (overtone number)




Example: specially chosen bumps for the string
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(Montgomery 2005, ASP, 334, 553)

Three beads introduce three “kinks” into the eigenfunctions. Sharp
bumps produce larger kinks than broader ones. Note the amplitude
difference across the bumps due to partial reflection of the waves.



Example: specially chosen bumps for the string

The pattern in the frequency spacing is a superposition (in
the linear limit) of the patterns introduced by the individual
beads:

Forward Frequency Differences for the Vibrating String
T T T T T

2.0 1015 20 25 30 35 40

n (overtone number)

The perturbations assumed here in éc/c are notin the
small/linear limit.



Why do we care? Because beads on a string
are like bumps in a stellar model

log(1-M,/M,)

_ 0 -5  -10
Changes in the 1T e
chemical profiles (in a Sosk / E

. e C ! ]
WD) producig lzu_rnps in %06k He ! ]
the Brunt-Vaisala Eoak 0 / E
frequency. These 2 0'2 g fmm
cU.d I |
bumps produce mode = 7 /
i nri—— . -

trapping in exactly they
way that beads on a
string do. This allows us .
to learn about the = |
location and width of
chemical transition
zones in stars.

® = “normalized buoyancy radius” o [ dr|N|/r



Mode trapping of
eigenfunctions in a WD
model due to the
composition transition
zones.




Mode trapping also affects the period
spacings...
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Period (sec)
(Cérsico, Althaus, Montgomery, Garcia—Berro, & Isern, 2005, A&A, 429, 277)

The open circles/solid lines are the mode trapping seen in a full
WD model and the filled circles/dashed lines are the result of
applying the simple beaded string approach. This shows that
the string analogy captures much of the physics of the full
problem.



The Core/Envelope Symmetry

1

For the vibrating string, a
bump near one end of the
string produces the same
set of frequencies as a
bump the same distance
from the other end of the
string.

In the same way, a “bump”
in the buoyancy frequency
in the deep interior of a WD
can mimic a bump in its
envelope.

So a bump at M, ~ 0.5 M,
can mimic a bump at

log(1 — M,./JM,) =~ —5.5
and vice versa.

-1.5

DA model

T

L B e e

® M _/M,=0.7863
O logq=-7.176

O M,/M,=0.5622
® logg=-5.331
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The Core/Envelope Symmetry

We can map the connection between these “reflection” points,
points in the envelope that produce qualitatively the same
signature as points in the core:

O,

log(1-M,/M,)

-10 - / !

M,/M.



Observations and Time Series Data

Pulsations are observed by time series measurements of
* intensity variations
e radial velocity variations
Only for the case of the Sun can we obtain disc-resolved
measurements of the perturbations.
For other stars, we observe the light integrated over the
observed disc of the star, although the techniques of
Doppler Imaging can be used to provide information about
the spatial structure of the perturbations on the stellar
surface.



Sampling and Aliasing

In trying to recover frequencies from data, it is important
for any gaps in the data to be as small as possible
e This is because data gaps introduce false peaks into
the Fourier transform
¢ these peaks are called “aliases” of the true frequency
e a priori, one cannot tell which peaks are the “true”
peaks and which are the aliases (especially if several
frequencies are simultaneously present)

For instance, if one observes a star from a single

observatory, one might obtain 8 hours of data per night
with a 16-hour gap until the next night’s observations.



Sampling and Aliasing (cont.)

Taking the Fourier Transform of such a signal, we find that
[A(w)] =

sin[Ntp(w — wp)/2] sinfty(w — wo)/2]
sin[tp(w — wp)/2] tn(w—wp)/2

where, ¢, is the length of a day in seconds, ¢y is the length
of time observed per night, w is the angular frequency of
the input signal, and N is the number of nights observed.

The alias structure of a single frequency, sampled in the
same way as the data, is called the “spectral window”, or
just the “window”. The closer this is to a delta function, the
better.



Sampling and Aliasing (cont.)

five 8-hour nights with
16-hour gaps five days continuous data
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Sampling and Aliasing (cont.)

Two obvious solutions to this problem:

e observe target continuously from space
* SOHO (Solar Heliospheric Observatory)
* Kepler satellite

* observe target continuously from the ground...using

a network of observatories

e WET (Whole Earth Telescope)
¢ BISON (Birmingham Solar Oscillations Network)
* GONG (Global Oscillations Network Group)



Spectral window for WET observations of the white dwarf GD 358

(Winget, D. E. et al. 1994, ApJ, 430, 839)
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Fi1G. 2.—Spectral window for the complete GD 358 data set, showing the
pattern of peaks that will result from the presence of a single frequency in the
power spectrum, in units of micromodulation power (ump).
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Power spectrum of the white dwarf GD 358

(Winget, D. E. et al. 1994, ApJ, 430, 839)
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FiG. 7—Full power spectrum of GD 358. The different scales for each panel attempt to accommodate the large dynamic range present. Triplets are labeled with
their corresponding k-value, and the sum and difference frequencies are labeled with the k-values for the triplets which combine to form them.



Hel iOSGiSTﬂOlOgy: Asymptotic relation for p-mode frequencies

A more systematic analysis of the adiabatic equations for the n
and ¢ dependence of p-mode frequencies gives

¢ 1 Av?
ungz(n++—|—a Av — (AL? - 9)

2 4 Une

dominant, “large separation” “small separation”

¢ valid in high-n, low-¢ limit

R qr !
Av = [2/ C] = inverse sound crossing time
0

* near degeneracy of modes: v,y >~ vy, _1 s42

e deviations from this near degeneracy give us information
about the radial structure of the Sun or other stars
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Helioseismology

Helioseismology is the application of exactly these
principles to the oscillations in the Sun:

dwn, R 5c? )
ot [t ) ar
Wne 0 c P

In the above formula, we have defined

dwne = wpe(Observed) — w,,(Model)
5c? ¢*(Sun) — ¢*(model)
op p(Sun) — p(model)

K(’ff = the sampling kernel for ¢?
for eigenmode {n, ¢}

K;M = the sampling kernel for p
for eigenmode {n, ¢}



Given the large number of observed modes in the Sun (millions,
literally), we can hope to construct “locally optimized kernels” by
looking at the appropriate linear combinations of the frequency
differences, dwy:

dwne
% An@ WOnt =
/ { ZAMK 9p ZAMKM ]d

_ opt __g-opt
=K°S =K,

Since the original kernels are oscillatory, such as individual
terms in a Fourier series, by choosing the { A;} appropriately
we can make the optimized kernels, K2** have any functional
form we choose. In particular, ...



Inversions

The A,, can be chosen such that
o K" is strongly peaked at r = 0.75 R, say
* KpP'is negligibly small everywhere (is suppressed)
The result: a helioseismic inversion for the sound speed in the Sun
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The most conspicuous feature of this inversion is the
bump at r ~ 0.65 R, where

§c¢® = *(Sun) — ¢*(model)

* most likely explanation has to do with He settling
(diffusion)

¢ the model includes He settling, which enhances the
He concentration in this region

* overshooting of the convection zone may inhibit He
settling

= Sun has lower He concentration than model at this

point

* since ¢? o« I'1'T/p, and model has higher 1 than Sun,
this produces a positive bump in é¢?



Why do inversions work so well for solar
p-modes?

® solar p-modes can be thought of
as sound waves which refract off
the deeper layers

¢ depth of penetration depends on ¢
low-/: penetrate deeply, sample
the core

high-/: do not penetrate deeply,
sample only the envelope

= different ¢’s are very linearly independent

= relatively easy to construct localized kernels



Refraction of p-modes

* p-modes are essentially sound waves
° 2 ~kpT/m
= % is a decreasing function of r
e wavefront is refracted upward
* “mirage” or “hot road” effect

Figure 5.4. Propagation of acoustic waves, corresponding to modes with [ =
30, v = 3mHz (deeply penetrating rays) and [ = 100, v = 3mHz (shallowly
penetrating rays). The lines orthogonal to the former path of propagation
illustrate the wave fronts.



Major Results of Helioseismology

¢ depth of the convection zone measured
e found to be ~ 3 times deeper than previously thought
(models in the 1970’s had been “tweaked” to minimize
the Solar neutrino problem)

In addition, Houdek and Gough (2007, MNRAS, 375, 861)
have recently shown that, by looking at second
differences of low-¢ modes only, one could derive the
depth of the convection zone:



Major Results of Helioseismology (cont.)
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Major Results of Helioseismology (cont.)

e the standard opacities used up to the late 1980’s
were found to be ~ 3 too small

the effects of metals needed to be added
e this led to the:
OPAL opacity project (Iglesias & Rogers 1996, ApJ,
464, 943)
OP opacity project (Seaton et al. 1994, MNRAS, 266,
805)
¢ this had effects throughout the H-R diagram:
e.g., with new higher opacities, the pulsations of B
stars could now be explained (bump in opacity due to
partial ionization of metals — Dziembowski &
Pamyatnykh 1993, MNRAS, 262, 204)



Major Results of Helioseismology (cont.)

e detection of differential rotation in the Sun

e rotation profile different from what was theoretically
expected

e discovery of a shear layer near the base of the Solar
convection zone (the “tachocline”)

Both of these effects have to do with rotation.

How does rotation affect a pulsating object?



The Effect of Rotation

e breaks spherical symmetry
* analogous to an H atom in an external magnetic field

e lifts degeneracy of frequencies of modes with the

same {n, ¢} but different m
® again analogous to an H atom (Zeeman splitting)

e frequencies are perturbed by the non-zero fluid
velocities of the equilibrium state (e.g., to linear order
by the “Coriolis force” and to second order by the
“centrifugal force”)



The Effect of Rotation (cont.)

e if rotation may be treated as a perturbation (“slow
rotation”), then we can calculate kernels which give the
frequency perturbations as an average over the rotation
profile Q(r, 0):

R T
OWnem :/ dr/ rdd Kpom(r,0) Q(r, 6)
0 0
e for uniform (“solid body”) rotation
5wn£m = m/BnE Qsolid

= Jw is linearly proportional to m, the azimuthal
quantum number

e for more general (differential) rotation, e.g., Q2 = Q(r, ), dw
is no longer a linear function of m

= departures from linearity give information about
Q(r,0)



Rotational Inversion for the Sun

nHz
. . . 450
e radiative interior
rotates rigidly .
e convection zone
rotates 400
differentially
375
* faster at
equator
* slower at 350
poles
325

radiative convective



* naive models predict “constant rotation on cylinders”
® in contrast, in the convective region, we find that the
rotation rate is mainly a function of latitude, Q2 ~ Q(9)
= little radial shear in the convection zone
* nearly rigid rotation of radiative region implies
additional processes are at work
* e.g., a magnetic field could help these layers to rotate
rigidly
e The tachocline: the region of shear between the
rigidly rotating radiative region and the differentially
rotating convective region



The Solar Tachocline

(from Charbonneau et al. 1999, Apj, 527, 445)
location: r =~ 0.70 R,
thickness: w ~ 0.04 Ry
prolate in shape:

r, ~ 0.69R, (equator)
r. ~ 0.71 R, (latitude 60°)

likely seat for the Solar dynamo
* magnetic field + shear



Rotation in Red Giants

LETTER

doi:10.1038/nature10612

Fast core rotation in red-giant stars as revealed by

gravity-dominated mixed

Paul G

Marc-Antoine Dupret Benoit Musser Patrick Eg,g,enberger Dennis Stello

modes

. Beck', Josefina Montalban?, Thomas Kallinger', Joris De Ridder', Conny Aerts"*, Rafael A. Garcia®, Saskia Hekker

' Yvonne Elsworth Seren Frandsen

Fabien Carrier', Michel Hillen', Mmhael Gruberbauer'?, Jorgen Christensen- Dalsgaard”, Andrea Mlghu , Marica \’alentiniz,
Timothy R. Bedding“’, Hans Kjeldsen“, Forrest R. Girouald”, Jennifer R. Hall" & Khadeejah A. Ibrahim'?

When the core hydrogen is exhausted during stellar evolution, the
central region of a star contracts and the outer envelope expands and
cools, giving rise to a red giant. Convection takes place over much of
the star’s radius. Conservation of angular momentum requires that
the cores of these stars rotate faster than their envelopes; indirect
evidence supports this"2 Information about the angular-momentum
distribution is inaccessible to direct observations, but it can be
extracted from the effect of rotation on oscillation modes that probe
the stellar interior. Here we report an increasing rotation rate from
the surface of the star to the stellar core in the interiors of red giants,

ined using the ional splitting of recently detected
‘mixed modes™*. By comparison with theoretical stellar models, we
conclude that the core must rotate at least ten times faster than the
surface. This observational result confirms the theoretical prediction
of a steep gradient in the rotation profile towards the deep stellar
interior">¢,

because that would not lead to a consistent multiplet appearance over
several orders such as that shown in Fig. 1. The spacings in period
between the multiplet components (Supplementary Fig. 7) are too
small to be attributable to consecutive unsplit mixed modes* and do
not follow the characteristic frequency pattern of unsplit mixed
modes’. Finally, the projected surface velocity, vsin i, obtained from
ground-based spectroscopy (Table 1), is consistent with the rotational
velocity measured from the frequency splitting of the mixed mode that
predominantly probes the outer layers. We are thus left with rotation
as the only cause of the detected splittings.

The observed rotational splitting is not constant for consecutive
dipole modes, even within a given dipole forest (Fig. 1b and Sup-
plementary Figs 3b and 5b). The lowest splitting is generally present
for the mode at the centre of the dipole forest, which is the mode with
the largest amplitude in the outer layers. Splitting increases for modes
with a larger gravity component, towards the wings of the dipole mode



Supplementary Figure 8. The value ,, and mode inertia for a representative stellar model
of KIC 8366239. a, f, as a function of mode frequency for oscillation modes of spherical degree

(=1 and (=2 b, The corresponding mode inertia log(E) of these modes. Modes of degree (=0,

£=1, 0=2 are drawn in green, blue, and red, respectively.
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Rotation in Red Giants
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Spin down of the core rotation in red giants*

B. Mosser', M. J. Goupil', K. Belkacem!', J. P. Marquesz, P. G. Beck®, S. Bloemen?, J. De Ridder?, C. Barban',
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ABSTRACT

Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to
probe the rotational behaviour in their deep interiors using the observations of mixed modes.

Aims. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and
fundamental stellar parameters.

Methods. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red
giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution,
allows us to derive global information on stellar evolution.

Results. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are
dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small
increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump
stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with
increasing stellar mass.

Conclusions. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed
rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slow-
down occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured
in white dwarfs.




B. Mosser et al.: Rotation in red giants
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Pulsations of Other Classes of Stars

white dwarf stars:

* DOV, DBV, and DAV
stars

sdB pulsators
(EC14026 stars)

classical Cepheids
roAp stars

S Cephei stars

o Scuti stars

~ Doradus stars
Solar-like pulsators

(Christensen-Dalsgaard 1998)
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White Dwarf Pulsators

* richest pulsators other than the Sun (many modes
simultaneously present)

* many are large amplitude pulsators (61/1 ~ 0.05 for a
given mode, nonlinear)

e pulsations are due to g-modes, periods of
~ 200-1000 sec

e pulsations are probably excited by “convective
driving” (Brickhill 1991, Goldreich & Wu 1999), and
possibly also by the kappa mechanism

DAVs: pure H surface layer, driving due to H
ionization zone

DBVs: pure He surface layer, driving due to He
ionization zone (predicted to pulsate by Winget et al.
1983, Apd, 268, L33 before they were observed)



White Dwarf Pulsators (cont.)

¢ asymptotic formula for g-mode periods is

on2n 2N 17!
Py=—"__ 2a
RSN U r }

= Periods (not frequencies) are evenly
spacedinn (n=1,2,3...)

* as for p-modes, solid-body rotation splits degenerate
modes into 2/ 4+ 1 components:

¢ =1 — 3 distinct frequencies
¢ = 2 — 5 distinct frequencies

* in many cases, asteroseismology of a particular object has
led to an accurate determination of some subset of the
following: the mass, temperature, rotation frequency,
surface hydrogen or helium layer mass, and C/O
abundance ratio in the core



A DOV star: PG 1159-035

¢ 125 individual frequencies observed
® both ¢ = 1 and 2 modes observed
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FIG. 6.—Average of the power in the multiplets shown in Fig. 4 for | = 1 (left panel) and | = 2 (right panel)




A DOV star: PG 1159-035 (cont.)

(Winget, D. E. et al. 1991, ApJ, 378, 326)
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A DOV star: PG 1159-035 (cont.)

e proved beyond a shadow of a doubt that the modes
were g-modes correspondingto /=1, 2

e asteroseismologically derived parameters:

mass: 0.586 £ 0.003 Mg
rotation period: 1.38 +0.01 days
magnetic field: < 6000 G



A DBV star: GD 358

10 consecutive ¢ =1
radial orders observed,
with n=8-17

(Winget et al. 1994, ApJ, 430, 839)

IDENTIFIED FREQUENCIES FOR £ = 1, 1000-2400 uHz

Frequency Power | A Frequency | Period

k m (uHz) (ump) (uHz) )
17, -1 1291.00 24.5 6.58 774.59
0 1297.58 2107 770.67
+1 1304.12 34.1 6.54 766.80
16... —1 1355.58 24 6.27 737.69
0 1361.85 120 734.30
+1 1368.50: 71 6.65 730.73
15, ~1 1421.27 87.0 6.00 703.40
0 1427.27 3621 700.64
+1 1434.04 824 6.77 697.33
M. -1 151272 126 6.23 661.06
0 151895 69.7 658.35
+1 1525.62 184 6.67 655.47
13.. -1 1611.80 394 5.58 62042
Q 1617.38 334 618.28
+1 1623.49 298 6.11 615.96
12......... 0 1733.88: 1.8 576.76
| E PR -1 1840.46: 26 542 34334
0 1845.88: 1.8 541.75
+1 1852.12 1.6 6.24 539.92
10... -1 1989.26: 03 4.42 302.70
0 1993.68: 12 501.59
+1 1998.83: L3 513 500.29
9. —1 2150.57: 21 3.53 464.99
0 2154.10 20.5 464.23
i1 215767 14 357 463.46
-1 2358.85 236 371 423.94
0 2362.56 248 423.27
+1 2366.46 12.3 3.90 422.57




Power spectrum of the white dwarf GD 358

(Winget, D. E. et al. 1994, ApJ, 430, 839)
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FiG. 7.—Full power spectrum of GD 358. The different scales for each panel attempt to accommodate the large dynamic range present. Triplets are labeled with
their corresponding k-value, and the sum and difference frequencies are labeled with the k-values for the triplets which combine to form them.



GD 358 (cont.)

e asteroseismologically derived parameters
(Bradley & Winget 1994, Winget et al. 1994):
mass: 0.61 £ 0.03 M,
Mye: 2+1x1076 M,
rotation period: ~ 0.9-1.6 days
differential  rotation
implied
luminosity: 0.05+ 0.012L
distance: 42+ 3pc

* measured parallax for GD 358 is 36 + 4 pc
— agrees with asteroseismologically derived distance

However, looking more carefully reveals two classes of
asteroseismological fits...



GD 358 (cont.)

Models with a changing
C/O profile in the core
(Metcalfe 2003)

Models with a uniform core
and a two-tiered helium
profile in the envelope
(Fontaine & Brassard 2002)

[the data are solid lines, filled
circles, models are dashed lines,
open circles]

dP (sec)

L C/0 core, 1-layered env. (Metcalfe 2003)

C core, 2-layered env. (Fontaine & Brassard 2002)
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This can be explained as an example of the “core/envelope”
symmetry in pulsating white dwarfs that we discussed previously.
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GD 358 (cont.)

Genetic algorithm fitting techniques have recently been
applied to white dwarf modeling (e.g., Metcalfe et al. 2000, ApJ,
545, 974, Metcalfe, Montgomery, & Kawaler 2003):
» explore possibility of a *He layer
(Montgomery, Metcalfe, & Winget 2001, ApJ, 548, L53)
 constrain the ?C(«,v)'°O reaction rate
(Metcalfe 2003)
e constrain the mass fraction of oxygen
in the core: Xo = 67-76 %
(Metcalfe 2003; Metcalfe, Winget, & Charbonneau 2001, ApJ, 557, 1021)
e constrain neutrino emission rates, compare with
Standard Model of particle physics
(Winget et al. 2004, ApJ, 602, L109)



A DAV: BPM 37093

e White dwarfs predicted
to crystallize as they 14000 |
cool (Abrikosov 1960, i
Kirzhnitz 1960, and Salpeter 12000 -

1961) I
10000 r

Teu (K)

e crystallization delays [
cooling, adds ~ 2 Gyr 8000 -
to Galactic disk ages i
based on white dwarf 6000 |-

i e S R O R
COOI|ng 0.4 0.6 0.8 1 12

M./Mg
e promise of deriving the

crystallized mass
fraction
asteroseismologically

High mass = crystallized
(Montgomery & Winget 1999, ApJ, 526, 976)



BPM 37093 (cont.)

e BPM 37093 has been extensively observed with the Whole
Earth Telescope (WET)

The effect of the crystallized core is to exclude the pulsations
from it (Montgomery & Winget 1999)

Preliminary results:
BPM 37093 is ~ 90 % crystallized by mass
(Metcalfe, Montgomery, & Kanaan 2004)

This would be the first “detection” of the crystallization process
in a stellar interior.

As a cross-check of our approach, we will do a similar analysis
for a low-mass star which should be uncrystallized, and we will
check if we do indeed find a best fit having 0% crystallization.



The Classical Cepheids
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Subdwarf B/EC 14026 stars

e are Extreme Horizontal Branch (EHB) stars

e recently predicted and then observed to pulsate
(Charpinet et al. 1996, Apd, 471, L103)

o Tog ~ 35,000 K, logg ~ 5.9

e driving is due to an opacity bump due to metals (in
this case, mainly Fe), as in the g Cephei stars

e gravitational settling and radiative levitation work to

increase the abundance of Fe in regions of the
envelope, enhancing the driving effect



Subdwarf B/EC 14026 stars

Typical lightcurves of
pulsating sdB stars
(Charpinet et al. 2009, AIP Conf.
Proc. 1170, 585)
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FIGURE 5. Typical lightcurves for pulsating sdB stars. The
upper part (in blue) shows sections of lightcurves obtained for
four rapid sdB pulsators (the V361 Hya stars) through PMT
broadband photometry using a uniform sampling of 10 s. The
lower part (in red) shows lightcurves obtained for four long
period sdB pulsators (the V1093 Her stars) through CCD R-
band photometry using a nearly constant sampling time of
~ 80s.



Subdwarf B/EC 14026 stars

(Charpinet et al. 2009, AIP Conf. Proc. 1170, 585)

TABLE 2. Structural parameters from asteroseismology for a sample of 11 p-mode sdB pulsators.

Name Tetr logg log Meny /M. M., References
PG 1047+003 331504200  5.800+0.006 —3.7240.11 0.490+0.014 [11]
PG 0014+067 34130+£370  5.7775+£0.009 —4.324+0.23  0.477+£0.024 [10]
PG 1219+534 33600+370  5.807+0.006 —4.25+0.15 0.457+0.012 [8]
Feige 48 29580+370  5.437+£0.006 —2.97+0.09 0.460-+£0.008 [9]
PG 1325+101 35050+£220  5.811+£0.004 —4.18+0.10 0.499+0.011 [7]
EC20117-4014  34800+2000 5.856+0.008 —4.17+0.08 0.540+0.040 [43]
PG 0911+456 31940+£220  5.777+£0.002 —4.69+0.07 0.390+£0.010 [40]
BAL 090100001  28000+1200 5.383+0.004 —4.89+0.14 0.4324+0.015 [46]
PG 1336-018 327804200  5.7394+0.002 —4.5440.07 0.459+0.005 [5]
EC09582-1137 348064233  5.788+0.004 —4.39+0.10 0.4854+0.011 [38]
PG 0048+091 3333541700  5.711+0.010 —4.92+0.20 0.447+0.027  in prep




Other Pulsators

roAp stars: “rapidly oscillating Ap stars”
* have magnetic fields and peculiar
chemical abundances
¢ p-mode oscillators (~ 5 minute periods)
with the pulsation axis inclined relative to
the magnetic axis
¢ driving mechanism not yet established

delta Scuti stars:
° ~1.6-2.5 M,

* p-mode oscillators, periods of hours
e driven by the standard Kappa mechanism



Other Pulsators (cont.)

Gamma Doradus Stars:

* g-mode oscillators, periods of one to
several days

* probably driven by “convective driving”

¢ long periods make it difficult to do
asteroseismology

Solar-like stars:

* p-mode oscillators
¢ stochastically driven (by convection zone)
¢ periods of several minutes



Observed frequencies in beta Hydri (Bedding et al. 2001,
) compared to a scaled solar spectrum
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Electronic copies of these notes (in living color) can be
found at:

www.as.utexas.edu/~ mikemon/pulsations.pdf

Good luck!



