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This thesis addresses the physics relevant in crystallizing white dwarf stars.

This problem is not merely of academic interest, since white dwarf stars provide

us with one of the best methods for estimating for the age of the local Galactic

disk. In addition, understanding these stars allows us to probe the physics

of matter at temperatures and densities otherwise inaccessible in present-day

laboratories.

In the first part of my thesis, I explore the effect which phase separation

of Carbon and Oxygen can have on the ages of white dwarf stars. I find that this

additional energy source can lengthen white dwarf ages by at most ∼ 1.5 Gyr,

with more likely values being in the range 0.4–0.6 Gyr. The most important

factors influencing the size of this delay are the total stellar mass, the initial

composition profile, and the phase diagram assumed for crystallization. These

relatively small age delays are consistent with recent results that the oldest

globular clusters may only be ∼ 2 Gyr older than the local Galactic disk.
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In the second part of my thesis, I consider the effect which a crystalline

core has on the pulsations of white dwarf stars. From global calculations of

g-mode eigenfunctions which include the response of the crystalline core, I find

that the amplitudes of the g-modes are greatly reduced in the solid region.

As a result, the g-mode oscillations can be accurately modeled by a modified

boundary condition in which the g-modes are excluded from the solid core.

As the white dwarf models become more crystallized, the mean period

spacing and the periods themselves are lengthened, and can increase by as

much as 30% for a model which is 90% crystallized by mass. I also show how

mode trapping information can be used to disentangle the effects due to the

hydrogen layer mass from those due to crystallization. If we are able to obtain

mode identifications for enough modes in the DAV BPM 37093, then we may

be able to “empirically” measure the degree of crystallization which is present

in this object, and thereby test the theory of crystallization itself, now more

than 30 years old.

The simplicity of white dwarf stars makes them ideal targets of study,

since we believe we can adequately model the physical processes occurring

inside them. In addition, 98% of all stars are believed to end their lives as

white dwarf stars. If we can understand these stars, then we can provide final

boundary conditions for evolution of post-main sequence models. In this sense,

they are fundamental objects.
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Chapter 1

Overview

1. Introduction

The study of stars extends far into our scientific past, and the field of As-

tronomy arguably holds the title of the oldest “science.” Since the time of

the ancient Greeks and Babylonians, astronomers have built models of varying

complexity which attempted to describe the heavens. By modern standards

these models were ad hoc in that they only applied to objects in the heavens,

and even then each object had to be treated as a special case. This changed,

however, when Newton deduced a small set of physical laws which governed

the motions of the Sun and planets as well as the motions of objects here on

Earth. Thus, he opened the way for us to “understand” the universe in the

modern sense, by modeling it in terms of theories and concepts which in prin-

ciple apply everywhere. In this way, the universe itself became the laboratory

in which new models and theories could be tested.

The first serious efforts at modeling the internal structure of stars were

made in the mid-1800’s, and these efforts were naturally first focussed on un-

derstanding the Sun. A paradox ensued, since at the time there was no known

energy source capable of sustaining the Sun for the period of time it was be-

1
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lieved to have existed on the basis of geological evidence. This remained a

mystery until the 1930’s, when nuclear fusion and fission were discovered. In

this way, the theory of stellar evolution had foreshadowed these discoveries by

approximately half a century.

The relatively recent rise of numerical computing allows us to attack

stellar modeling in a much more detailed and realistic way than the analytical

analyses of the past; we use equations of state and opacities which depend

on quantum mechanical properties of individual elements as well as on the

ionization equilibrium between many different chemical species. Much of the

physics which we use in our models has been calculated theoretically but not

verified experimentally, since the temperatures and densities cannot at present

be reached in terrestrial laboratories. One goal of stellar astronomy is to use

the stars themselves as the laboratories to test our understanding of matter at

these temperatures and densities. In order for this process to be effective, we

need to have models which are already fairly accurate in describing the physics

in the stars.

2. Why We Study White Dwarf Stars

2.1. Physics

White dwarf stars offer us the best opportunity for progress because their

structure does not depend as sensitively on poorly known physics as do models

of other stars. For instance, since they are supported by degenerate electron

pressure, their mechanical structure is essentially separate from their thermal

structure, which greatly simplifies the calculations of how they cool. Also,
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nuclear reactions presumably play no role, at least in the cool white dwarfs,

so uncertainties in nuclear reaction rates do not add “theoretical noise” to the

models. In addition, convection, while present, never affects more than the

outer 10−6 in mass of the models. Finally, the high surface gravities (log g ∼ 8)

ensure that spherical symmetry is a very good approximation, even in the

presence of moderate rotation rates or strong magnetic fields.

White dwarf stars have one further characteristic which makes them

more meaningful to model: they pulsate when in certain temperature ranges,

called instability strips. This allows us to learn about their internal structure

by matching the observed frequencies to particular pulsational models of these

stars. We call this field “asteroseismology” since it is analogous to the seismo-

logical analyses which geologists use to learn about the internal structure of

the Earth. This technique allows us to “see inside the stars” in a way which is

forbidden to spectroscopy and photometry, which can only measure conditions

at the photosphere. If we make the reasonable assumption that these pulsating

white dwarfs are representative of the rest of the white dwarf population, then

we are better able to constrain our models of these other white dwarfs.

2.2. Astrophysical Relevance

The above arguments convince us that our ability to model white dwarf stars

is quite good. More importantly, however, white dwarfs allow us to address

issues which are critical to the larger astronomical community.

According to standard Big Bang cosmology, the universe, and therefore

the Galaxy, has a finite age. As a result, the oldest white dwarfs should date

from the time just after star formation began. Because white dwarf evolution
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consists of cooling from hotter to cooler temperatures, these oldest white dwarfs

should also be the coolest and faintest. This argument predicts that we should

find no white dwarfs fainter than a certain minimum luminosity, since there has

not been sufficient time since the earliest epochs of star formation for these stars

to cool further. Such a luminosity cutoff has indeed been observed (Liebert,

Dahn, & Monet 1988; Oswalt et al. 1996).

In order to make use of this faint luminosity cutoff, we must model the

cooling of these white dwarfs to determine how long it has taken them to reach

their present luminosities. To do this, we need to know what parameters de-

scribe the population as a whole. Two of the most important parameters for

this are the surface hydrogen and helium layer masses. Recent asteroseismo-

logical determinations suggest that these masses are “thick,” having fractional

stellar masses of MHe/M? = 10−2 and MH/M? = 10−4 (Clemens 1993). This

knowledge is crucial, since each order of magnitude increase in MHe systemat-

ically results in a 0.75 Gyr decrease in the ages of white dwarf models at the

observed luminosity cutoff (Wood 1990; Wood 1992).

At the present time, the largest systematic source of uncertainty in white

dwarf ages, and hence the derived age for the local Galactic disk, arises from

potentially unknown physics. This physics is related to the crystallization of the

dense plasma in the interiors of cooling white dwarfs. Crystallization, through

the release of latent heat, adds approximately 1 Gyr to the cooling times of

these models. The process of phase separation of carbon and oxygen, possible

during crystallization, has been calculated to add anywhere from 1 to 5 Gyr to

these ages. As such, phase separation represents the single largest systematic

uncertainty in the theory of white dwarf cooling. While crystallization itself
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rests on a relatively firm theoretical basis, neither it nor phase separation have

ever been tested in the laboratory under conditions appropriate to white dwarf

interiors.

3. Overview of Thesis

It is the goal of this thesis to address both aspects of this problem. In the

first part, we explore the range of age delays which the phenomenon of phase

separation can produce in our models. We do this by varying the parameters

of our models as well as by varying the prescription used for phase separation.

This allows us to assess the main source of uncertainty in the age of the Galactic

disk as derived from the observed white dwarf luminosity function.

In the second part of this thesis, we develop the theory of pulsations

for white dwarfs with a crystallized core. In so doing, we lay the foundations

for the interpretation of data from crystallized white dwarf pulsators. This

exploration is not just an academic exercise since we now know of one member

which fits into this (hopefully growing) class of objects. The white dwarf BPM

37093, which was recently discovered to be a pulsator (Kanaan et al. 1992),

should be substantially crystallized in its interior (Winget et al. 1997), and

may provide the first observational test of the theory of crystallization in dense

stellar plasmas.

4. Coda

There are two relatively new aspects of the investigation of white dwarf stars

which are worthy of mention, since they illustrate the utility of studying white
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dwarfs. The first is in the context of stellar evolution.

White dwarfs are believed to be the product of processes which take stars

on the main sequence and evolve them through the Giant Branch (GB) and

Asymptotic Giant Branch (GB), eventually leaving behind a remnant which

we identify as the white dwarf. These phases of evolution on the GB and the

AGB are relatively poorly understood theoretically, so we are at present unable

to model the internal structure of these stars with reliability. Our models of

white dwarfs, however, do provide a final boundary condition in time for these

post-main sequence models to match.

As an example, Provencal et al. (1998) used Hipparcos data to test the

Mass-Radius relationship in white dwarfs. When they compared their data to

the zero-temperature Mass-Radius relation calculated by Hamada & Salpeter

(1961), they found that the only models which fitted the data for Procyon B had

iron in their cores. While they caution that their conclusions are still tentative,

this result could have major repercussions concerning our understanding of

post-main sequence stellar evolution.

As a final example, supernovae type Ia (SNIa) are believed to result

from systems which contain white dwarf stars accreting matter. This accretion

increases the mass of the white dwarf model to the point that it triggers a

thermonuclear runaway, which we identify as the SN. Recently, Garnavich et al.

(1998) have used SNIa’s to infer a nonzero value for the cosmological constant

Ω. They do this by assuming that SNIa’s have an absolute luminosity which

is a fixed function of the luminosity profile. They then measure discrepancies

in the observed and predicted brightnesses of these supernovae as a function of

redshift, and interpret these discrepancies in terms of a nonzero Ω.



7

In so doing, they are ignoring any potential systematic differences in

these supernovae. For instance, a change in the metallicity of the white dwarf

from solar abundance to 0.1 solar changes the SN brightness by 0.2 magnitudes,

which is comparable to their measured trend suggesting a nonzero Ω (Höflich,

Wheeler, & Thielemann 1998; Riess et al. 1998). In addition, phase separa-

tion of carbon and oxygen in white dwarfs, if it occurs, would also affect the

luminosity of the resulting SN (see Höflich, Wheeler, & Thielemann 1998 for

a discussion of SN modeling). Both the metallicity and the amount of phase

separation which has occurred in a given white dwarf should be correlated with

the age of the white dwarf relative to the onset of star formation in each galaxy.

Since galaxies at higher redshifts are systematically younger, their white dwarf

populations should show lower metallicities and less phase separation. This

will produce a systematic bias as a function of redshift in the SNIa progenitors,

and possibly in the supernovae themselves. Garnavich et al. (1998) have not

explicitly considered such effects in their analysis.

As we have seen, white dwarf stars provide a fertile astrophysical lab-

oratory in which we may hope to answer many of the larger questions in the

field. With the increasing availability of larger telescopes and more sensitive

detectors, more and more of these stars will be found and it will be possible to

study them in greater detail than ever before. With this increased scrutiny, we

hope to discover what secrets these stars hold, and what answers they provide

about the universe as a whole.





Chapter 2

Phase Separation

1. Introduction

In this chapter, we present an exploration of the significance of Carbon/Oxygen

phase separation in white dwarf stars in the context of self-consistent evolu-

tionary calculations. Because phase separation can potentially increase the

calculated ages of the oldest white dwarfs, it can affect the age of the Galactic

disk as derived from the downturn in the white dwarf luminosity function. The

largest possible increase in ages due to phase separation is ∼1.5 Gyr and the

smallest is ∼0.2 Gyr, with a most likely value in the range of 0.4–0.6 Gyr,

depending on the parameters of our white dwarf models.

2. Astrophysical Context

The phenomenon of phase separation and crystallization exists within the larger

context of white dwarf cooling. Since the time of Mestel’s original treatment

(Mestel 1952), much work has been done, both to improve the input physics

of the models and to make more complete observations of the white dwarf lu-

minosity function (WDLF). In 1987, Winget et al. showed that the observed

downturn in the WDLF could be understood in terms of a finite age for the

9
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Galactic disk, and that the WDLF could therefore in principle be used to

determine an age for the local Galactic disk. Using the preliminary results

from Liebert, Dahn, & Monet (1988, hereafter LDM) for the observed WDLF,

they obtained an age for the local Galactic disk in the range 7–10 Gyr. Since

then, Wood has made more detailed calculations using improved input physics,

Galactic evolution models, and WD parameters to constrain this age even fur-

ther Wood (1990, 1992, 1995). Historically, these developments were foreshad-

owed by Schwarzschild (1958), Schmidt (1959), and D’Antona & Mazzitelli

(1978), all of whom considered white dwarf evolution in a Galactic context.

Two observational surveys within the last ten years stand out in their

importance to the field. First, Liebert et al. (1988) produced a WDLF con-

taining 43 cool field WD’s, which was the largest such sample size up to that

point in time. More recently, Oswalt et al. (1996) produced a WDLF of 50

cool WD’s in wide binaries. Using the models of Wood, the LDM sample yields

an age for the Galactic Disk of ∼ 7.5± 1 Gyr (Wood 1995), while the Oswalt

et al. (1996) sample gives an age of 9.5+1.1−0.8 Gyr. Taking the error estimates at

face value, these results differ by 2σ. Wood & Oswalt (1998) conducted Monte

Carlo simulations and found that it is unlikely that both samples are consistent

with the same parent population.

In addition to the uncertainties in the observed WDLF, the way we

treat various physical processes in white dwarf interiors greatly affects the ages

which we derive for them. After the prediction in the early 1960’s that white

dwarfs should undergo a phase transition and crystallize as they cool (Abrikosov

1960; Kirzhnits 1960; Salpeter 1961), Mestel & Ruderman (1967) and Van Horn

(1968) estimated that the associated release of latent heat during this process
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would be large enough to delay the cooling of white dwarfs significantly. Lamb

& Van Horn (1975) included this energy release as part of their evolutionary

calculations of a 1 M¯ pure carbon white dwarf.

Stevenson (1977) was the first to propose a phase separation model that

might affect white dwarf cooling times by providing an additional source of

energy analogous to the release of latent heat. This model had a carbon core

with trace amounts of iron. In a later model, Stevenson (1980) suggested that a

uniform mixture of carbon and oxygen would become chemically differentiated

as a result of the crystallization process. Because such a redistribution of

elements could lower the binding (non-thermal) energy of the star, the change

in energy would be added to the thermal energy, and hence the luminosity, of

the star. This would increase the time for a white dwarf to cool to a given

luminosity, and would extend the apparent age of the Galactic disk as derived

from the WDLF.

Estimates of the amount by which the age of the local Galactic disk

might be extended have ranged from 0.5 Gyr to 6 Gyr (Mochkovitch 1983;

Barrat, Hansen, & Mochkovitch 1988; Garćıa-Berro et al. 1988; Chabrier et al.

1993; Segretain & Chabrier 1993; Hernanz et al. 1994; Segretain et al. 1994;

Isern et al. 1997; Salaris et al. 1997), although recent estimates have been on

the smaller end of this range, e.g., Salaris et al. (1997) calculate a delay of

∼ 1.0 Gyr. Most of this spread in calculated age delays comes from differences

in the assumed phase diagram, although the assumed C/O profile also has a

large effect.

In the context of Galactic evolution, recent mean age estimates for the

oldest Galactic globular clusters are smaller now than ever before (11.5 ± 1.3
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Gyr), while estimates of the age of the Galactic disk from the observed white

dwarf luminosity function (ignoring phase separation) are only slightly less

(9.5+1.1−0.8 Gyr). If the above age estimates for globular clusters and the Galactic

disk are correct, then any effects due to phase separation cannot be much larger

than 1–2 Gyr.

In this chapter, we examine the sensitivity of this calculated age delay to

the various physical assumptions by varying the initial C/O profile of the white

dwarf models, their total mass, and their H and He surface layer masses. In

addition, we examine the effect of using two different published phase diagrams

for the phase separation process, that of Segretain & Chabrier (1993) and that

of Ichimaru, Iyetomi, & Ogata (1988). We demonstrate through self-consistent

evolutionary calculations that previous approaches to this problem (e.g., Salaris

et al. 1997) are valid.

3. The Physics of Phase separation

3.1. Chemical Redistribution

Our present physical picture for the phenomenon of phase separation in white

dwarf stars is as follows. As a white dwarf cools, it eventually reaches a temper-

ature when its central regions begin to crystallize. This occurs when the ther-

mal energy of the ions becomes much smaller than the energy of the Coulomb

interaction between neighboring ions. As a result, the ions settle into lattice

sites and lose the ability to move freely in three dimensions.

If the white dwarf interior is initially a mixture of C and O, then re-

cent calculations indicate that the solid which crystallizes will have a higher O
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content than the fluid from which it formed (Ichimaru et al. 1988; Segretain &

Chabrier 1993). Thus the crystallizing region of the white dwarf becomes O-

enhanced and the fluid layer overlying this region becomes C-enhanced. Since

the C is slightly less dense than the O at a given pressure, this C-enhanced

fluid layer is mixed via a Rayleigh-Taylor instability (Mochkovitch 1983, Isern

et al. 1997) with the layers above, and C is transported outward from the

center. As the white dwarf continues to crystallize, the O-enhanced crystalline

core also continues to grow, with the net result that O is transported inward

in the white dwarf and C is transported outward. Thus, the chemical profile

after significant crystallization has occurred is different from the profile before

crystallization.

Just how different this profile is depends on the particular phase diagram

which is adopted for the process. In a “spindle” diagram, the solid which forms

always has an enhanced concentration of the higher charge element (in this case

oxygen), and the temperature of crystallization of the mixture lies between that

of the individual elements. An “azeotropic” diagram differs from this in that

there is a range of concentrations for which crystallization takes place below the

temperature of crystallization of either of the pure elements. This is somewhat

analogous to the phenomenon of “supercooling”. Finally, a “eutectic” phase

diagram is one in which there is near total separation of the higher and lower

charged ions upon crystallization, resulting in a segregation of the two chemical

species.

Stevenson’s original phase diagram (Stevenson 1980) was a eutectic

phase diagram with C and O being immiscible in the solid phase, with the

result that a pure O core would be formed in the models during crystallization.
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Using a density functional approach, Barrat et al. (1988) calculated a phase

diagram of spindle type. In this case, the solid which forms is a C/O alloy, but

with the O content of the solid enhanced relative to that of the fluid out of

which it formed.

This problem was revisited by Ichimaru et al. (1988). They found that

Stevenson’s initial prediction of a eutectic phase diagram was an artifact of his

use of the random-alloy mixing (RAM) model for the internal energies in the

solid phase. By comparison with Monte Carlo simulations, they found that

the linear mixing formula is more accurate for the solid phase. They then used

density-functional theory to derive a phase diagram of azeotropic type, which is

shown as the dashed line in Figure 2.1. This diagram is similar to the spindle

diagram, with the exception that there is a range of compositions for which

the crystallization temperature is less than the crystallization temperature for

either of the pure compositions.

Most recently, Segretain & Chabrier (1993) used a density-functional

approach to derive phase diagrams for arbitrary binary-ionic mixtures, as a

function of Z1/Z2, where Z1 and Z2 are the nuclear charges of the two chemical

species. For C and O (Z1/Z2 = 0.75), they obtain a phase diagram of spindle

type, which is shown as the solid line in Figure 2.1.

As shown in Figure 2.1, these diagrams of Ichimaru et al. and Segretain

& Chabrier differ slightly in the composition changes during crystallization, as

well as in the temperatures at which crystallization takes place. As a result,

they produce different chemical profiles after crystallization and different age

delays.
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Fig. 2.1.— Phase diagrams for a C/O mixture as computed by Ichimaru et al.

(1988, dashed line) and Segretain & Chabrier (1993, solid line), where the ver-

tical axis is in units of the crystallization temperature of C, and the horizontal

axis is the C mass-fraction. The solid line is of “spindle” type, while the dashed

line is that of an “azeotrope”. The principal feature of the azeotrope is that

there is a range of compositions for which the crystallization temperature of

the mixture is less than that of either of the two constituents in the pure state.
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3.2. Energy Release

Because the distribution of C and O within a model changes during phase

separation, the density profile changes as well. At a given pressure, O is slightly

denser than C. A model which has undergone phase separation has more oxygen

in its core, and thus a slightly larger concentration of mass in its central regions.

As a result, the phase-separated model is more tightly bound gravitationally.

While it may be convenient to think of the energy which is released as

being due solely to the change in the gravitational potential energy of the star,

this is only part of the story. The relevant quantity is actually the total binding

energy of the star, Ebind, which is the sum of all the nonthermal (structural)

sources of energy. As such, it acts as a potential energy for the configuration.

Ebind can be written as

Ebind = Egrav + Edeg + Ecoul (2.1)

where Egrav, Edeg, and Ecoul are the respective energy contributions from gravi-

tational interactions, kinetic energies of the degenerate electrons, and Coulomb

interactions among the different charged particles (ions and electrons).

As phase separation occurs and the central regions become oxygen en-

riched, the central density of the model increases. Thus, Egrav becomes more

negative, as does Ecoul. Edeg, however, becomes more positive, since the Fermi

energy of the electrons increases with increasing density. Summing these contri-

butions, we find that there is a net decrease in Ebind for the models considered

here. Due to conservation of energy, this energy must be used to increase the

thermal energy of the ions, which are the only significant repository of thermal
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energy in the cores of our white dwarf models. This energy, then, is available

to be radiated away and acts as an additional luminosity source.

In order to make this process clearer, we give the following example

which might be appropriate for a simplified model of planetary interiors. Imag-

ine we have a self-gravitating object made of two different materials which are

uniformly mixed, each of which is incompressible. If the materials are fluid

(e.g., molten), then the heavier of the two will sink to the center forming a core

comprised purely of the heavy material, surrounded by a mantle of the lighter

material. The internal energies of the fluid elements do not change as they are

transported up and down since the surrounding fluid medium is unable to do

any work on these elements by compressing them. This situation is analogous

to setting Ecoul and Edeg to zero in the white dwarf case. Thus, the only change

in energy is the change in gravitational energy, which is clearly negative. This

gravitational energy change is what drove the fluid motions even in the pres-

ence of viscous and other dissipative processes, and it is these processes which

transform the mechanical motion of “phase separation” into thermal energy,

thus allowing the object to remain warm longer.

The various contributions to the photon luminosity L and the neutrino

luminosity Lν of the white dwarf may be formally written as (e.g., Isern et al.

1997; Chabrier 1998)

L+ Lν = −
∫ MWD

0
dm



Cv
dT

dt
+ T

(

∂P

∂T

)

V,XO

dV

dt
+

(

∂u

∂XO

)

T,V

dXO

dt



 (2.2)

where V = 1/ρ is the specific volume, XO is the mass-fraction of the heavier

of the two chemical species (in this case, oxygen), and u is the internal energy

per unit mass, which contains thermal, electron degeneracy, and Coulomb con-
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tributions. The first term in the integrand on the righthand side of equation

2.2 is due to the heat capacity of the core, which includes the release of latent

heat of crystallization, while the second term gives the contribution to the lu-

minosity due to volume changes, and is usually small in white dwarfs since the

pressure P is only a weak function of the temperature. The final term gives

the luminosity due to the changing chemical profiles within the white dwarf.

This is the term we will study in our numerical calculations.

As a check on the direct evolutionary calculations, we can estimate the

age delay produced by a given energy release. If we denote by dE a small

amount of energy which is released during the process of phase separation, and

if we assume that this energy is quickly radiated, then we can calculate an

estimated age delay td:

td =
∫ dE

L
. (2.3)

In the context of a sequence of evolutionary models, this integral is opera-

tionally a sum, since a given model is computed at discrete points in time,

luminosity, etc. Furthermore, since the energy ∆Ei is released between lumi-

nosities Li−1 and Li, say, the average luminosity at which the energy is released

is approximately (Li−1+Li)/2, so the discrete version of equation 2.3 becomes

td =
∑

i

∆Ei
1
2
(Li−1 + Li)

. (2.4)

We have used equation 2.4 as an alternate prescription to calculate age delays.

For the larger energy releases, td computed in this way agrees with the delay

calculated from the self-consistent evolutionary calculations, and for small en-

ergy releases it provides a better estimate since the small energies can become

masked in the numerical noise of the evolutionary calculations.
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4. Numerics

The basis for these calculations is WDEC, the White Dwarf Evolutionary Code,

as described in Lamb & Van Horn (1975), and in Wood (1990). Our current

version uses the updated OPAL opacity tables (Iglesias & Rogers 1993; Wood

1993). We use the additive volume technique to treat the equation of state of

the C/O mixture in the cores of our models.

4.1. The Melting Curve

Our criterion for crystallization is given by the phase diagram which we adopt,

with the following caveat. Our equation of state (EOS) is based on the Lamb

EOS code (Lamb & Van Horn 1975), which has Γ ' 160 at crystallization.

Here, Γ ≡ Z2e2/〈r〉kBT is the ratio of Coulomb energy between neighboring

ions to each ion’s kinetic energy. More recent calculations indicate that Γ '

180 (Ogata & Ichimaru 1987). As a result, our values for the crystallization

temperature of C, TC,xtal, are too high by a factor of ∼ 180/160 = 1.125.

To remedy this situation, we could simply adjust TC,xtal downward ac-

cordingly, and we have done this for a few runs. This is inconvenient, however,

because it places us at the edge of our EOS tables which were calculated with

Γ ' 160. Instead, we apply a correction factor to our calculated age delays

which takes into account the fact that crystallization/phase separation occurs

at lower central temperatures, and therefore lower luminosities, than is calcu-

lated directly in our models. This correction to the calculated age delays is

typically of order 25%. We find that this procedure for calculating the age de-

lay is accurate to within 1–2% when compared to sequences which we calculate

self-consistently with Γ ' 180.
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4.2. Implementation in WDEC

The calculation of the evolutionary sequences is “quasi-static” in the sense

that we compute a sequence of static models separated by finite steps in time.

Each static model represents the cooling white dwarf at a different age and

luminosity. We include the physics of phase separation using the same ap-

proximation: we assume that the timescale for any mixing which occurs is

short compared to the individual evolutionary timesteps (see section 4.3. of

this chapter; Mochkovitch 1983; Isern et al. 1997), and we assume that the

binding energy which is released by this process can be modeled by some suit-

ably chosen local energy generation rate, εps (e.g., Isern et al. 1997). The

phase separation calculation may therefore be broken into three sections. The

first part involves obtaining the changing composition profile as a function of

the crystallized mass-fraction, while the second part is the calculation of the

cumulative energy released, also as a function of the crystallized mass-fraction.

The final part is the calculation of the value of εps, which is the energy locally

deposited per unit mass per unit time. Our implementation of the complete

problem is self-consistent in that we let εps vary as the compositional profile

changes due to crystallization, as WDEC iterates to a converged model.

The first part of the overall problem relates to the composition of the

crystallizing layers. Using the phase diagram of Segretain & Chabrier (1993) or

Ichimaru et al. (1988), we compute the final composition profile of the model

given the initial profile, before doing a full evolutionary calculation. This is

possible because the composition of the crystals which are forming is deter-

mined solely by the mass fractions of C and O which are present in the fluid
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phase, and not by the temperature and density of the medium (the tempera-

ture and density of course determine when the fluid crystallizes, but given that

it is crystallizing, the chemical composition of the solid is determined solely by

the composition of the fluid). We are therefore required to compute only once,

at the onset of crystallization, the composition profile as a function of the crys-

tallized mass fraction. At subsequent evolutionary times, we use this relation

and the current crystallized mass-fraction to interpolate onto the composition

grid, which is a computationally convenient procedure.

We take this same approach for the calculation of the energy released.

At the onset of crystallization, we calculate the total amount of energy released

as a function of Mxtal/M?, using the relation

δE =
∫ MWD

0

(

∂u

∂XO

)

T,V

δXOdm, (2.5)

where δE is the binding energy released by the composition change δXO. Since

these changes in composition are with respect to the pre-crystallization state,

we are in effect holding both the temperature and density profiles constant

for all subsequent phases of crystallization. Holding the temperature profile

constant is a quite reasonable approximation, since the vast majority of the

mass in the the white dwarf model is strongly degenerate for the temperature

range of interest. Similarly, we expect the changes in the density profile to

be small ( δρ
ρ ∼< 1%) even in the presence of composition changes. This is a

consequence of the fact that the equations of state for carbon and oxygen are

very similar in the strongly degenerate regime, i.e., µe = 2.0 for both elements.

This suggests that this approach would not necessarily be as accurate for carbon

and iron, for instance, since µe = 2.15 for iron.
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Fig. 2.2.— A comparison of the energy released during crystallization from a

static calculation (line) with that from a self-consistent evolutionary calculation

(filled dots). The error for the total energy released at complete crystallization

is less than 0.5%.
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Figure 2.2 provides the final justification for our assumptions. The

filled dots represent the energy released as computed self-consistently at each

evolutionary time step, and the solid line is the calculated energy released

assuming a static density and temperature profile as described in the above

paragraph. The best agreement is for smaller amounts of crystallization, since

these models differ the least from the initial static model. Even near complete

crystallization, however, the difference between the two values is less than 0.5%,

justifying our assumptions. Computationally, it is very convenient to compute

the energy release just once at the outset and then interpolate using the present

value of the crystallized mass fraction. This allows WDEC to avoid doing a

calculation of the energy release for each iteration of each model, which would

significantly affect the speed of the calculations.

Because all our calculations are done on evolutionary timescales, we do

not have any information about the actual dissipative processes which are re-

sponsible for depositing the energy of phase separation locally. Indeed, without

an accurate hydrodynamic model of the mixing process, this is not possible.

Fortunately, it is more important to know the total energy released rather than

exactly how this energy is deposited within the white dwarf model. This is be-

cause the core has a very high thermal conductivity, which tends to smooth out

the temperature distribution. Thus, wherever the energy is initially deposited,

it will soon be shared throughout the core; indeed, an isothermal core was an

assumption of the original Mestel theory (1952), and it is still a very accurate

description of the physics in the interiors of white dwarfs (e.g., Garćıa-Berro

et al. 1996; Segretain et al. 1994). We therefore choose εps such that the

local temperature is increased by the same fractional amount throughout the
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core, i.e., δT
T

= const., while we simultaneously require that the total energy

deposited in this way is equal to the energy released due to phase separation

in a given timestep. This is somewhat analogous to the analytical approach

outlined by Isern et al. (1997), although we developed our approach for ease

of numerical implementation.

There is one final adjustment which we make to the value of εps as

calculated above. It is due to the fact that WDEC calculates models quasi-

statically, so that εps is assumed to have been constant during the last time step

taken, when in fact it may have changed by a substantial amount. Put another

way, the value of εps which WDEC calculates should be associated with the

average luminosity of the present and previous timesteps, not just the current

luminosity. Thus, WDEC is implicitly calculating a delay based upon

td =
∑

i

∆Ei

Li

(2.6)

instead of the expression in equation 2.4. We can remedy this situation by an

appropriate rescaling of εps. If we rescale ∆Ei, and hence εps, by
Li

1
2
(Li+Li−1)

,

then equation 2.6 is transformed into equation 2.4, and we recover the correct

age delay due to crystallization when implemented in the evolution code. In the

limit that our timesteps are very small, the above prescription is not necessary,

but such small timesteps would be computationally inconvenient, both from a

cpu-time standpoint and from a numerical convergence standpoint.

4.3. Consistency Checks

We use three different initial C/O profiles in our analysis. In Figure 2.3 we

show the oxygen composition in the core both before (dotted line) and after
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(solid line) crystallization has taken place. We have taken a homogeneous

50:50 C/O initial distribution and assumed complete mixing of the overlying

fluid layers as crystallization takes place. This should place an upper limit

on the effect which phase separation can have on any particular model. We

note that the composition profile after crystallization assuming the Segretain

& Chabrier (1993) phase diagram agrees well with that given in Chabrier et al.

(1993).

Figure 2.4 shows a different initial oxygen profile which is computed in

Salaris et al. (1997) for a 0.61 M¯ white dwarf model. This profile was ob-

tained by considering nuclear reaction processes in the white dwarf progenitor.

Here we use a modified algorithm for mixing which reduces to the “complete

mixing” algorithm when applied to an initially flat distribution. When a shell

crystallizes, we check to see if the enhanced carbon content of the innermost

fluid shell now has more carbon than the shell overlying it. If it does, then we

mix the two shells and perform the same comparison with the next shell farther

out, mixing all three shells if necessary. In this way, we move outward through

the fluid until further mixing no longer decreases the carbon content of the

fluid between this point and the crystallization boundary. This is physically

reasonable, since carbon is, in a sense, “lighter” than oxygen, so these layers

should be mixed by a convective instability.

For completeness, we use a third profile taken from Wood (1990) and

Wood (1995). It is designed to be representative of C/O profiles calculated

in Mazzitelli & D’Antona (1986) and D’Antona & Mazzitelli (1989), who also
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Fig. 2.3.— Before crystallization has occurred, we have assumed a 50:50 C/O

mixture, as shown by the solid line (a). After crystallization is complete, the

oxygen profile is given by the dotted line (b) if the phase diagram of Segretain

& Chabrier (1993) is used, and by the dashed line (c) if the phase diagram

of Ichimaru et al. (1988) is used. We have assumed complete mixing of the

remaining fluid layers at each stage of crystallization. It is the redistribution of

matter from the initial to the final profile which results in a net decrease in the

overall binding energy of the configuration. This model is for a 0.6 M¯ white

dwarf.
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Fig. 2.4.— The same as Figure 2.3, except that the initial C/O profile (a)

is that computed by Salaris et al. (1997) for a 0.61 M¯ white dwarf model.

Curves (b) and (c) are the final profiles assuming the Segretain & Chabrier

(1993) and Ichimaru et al. (1988) phase diagrams, respectively. Note that the

oxygen mass-fraction at the very center increases by only about 15% during

crystallization in this case, as compared with a 40% increase for the central

value in Figure 2.3. Thus, less energy is liberated.
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consider nuclear reaction rates. Algebraically, it is given by

Xox =















0.75 0.0 ≤ q ≤ 0.5

0.75− 1.875(q − 0.5) 0.5 < q ≤ 0.9

0.0 0.9 < q ≤ 1.0

(2.7)

where q = Mr/M? and Xc = 1−Xox.

Our treatment of mixing provides an upper bound for the efficiency

of this process. If we were to perform a more self-consistent calculation, we

would compute the Brunt-Väisälä frequency for a given chemical profile in

the model and mix those layers which were convectively unstable and whose

computed timescales for mixing were shorter than the individual timesteps

in our evolutionary calculations. An analytical approach to this more detailed

problem is given in Isern et al. (1997) and Mochkovitch (1983). Here we merely

note that a typical value of |N 2| for a Rayleigh-Taylor unstable region in the

cores of our models is ∼ 10−4, yielding a timescale for the mixing instability of

1
|N |
∼ 102 s, which is clearly shorter than the relevant timescales for evolution.

5. A Simple Test Problem

As a check of the standard approach to treating phase separation, we performed

a simplified treatment of that given in Xu & Van Horn (1992), in which they

calculate the change in binding energy of a zero-temperature C/Fe white dwarf

which undergoes phase separation. In order to do this, we have written a sep-

arate code which implements the equations for a zero-temperature degenerate

electron gas. Our approach is simpler in that we do not include Coulomb effects

in our EOS calculations, so our approach is essentially pure Chandrasekhar the-

ory (Chandrasekhar 1939). We do include, however, relativistic effects, which
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Xu & Van Horn are unable to treat. In testing this approach to phase separa-

tion, we compute the energy released due to phase separation in two different

ways. First, we directly compute the global change in the binding energy. Sec-

ond, we use the expression for the local energy release and integrate this over

the mass of the model, as given in equation 2.5. To further simplify things, we

have taken the initial state to be one in which the distribution of Fe and C is

uniform throughout the model, and we have taken the final state to be a pure

Fe core surrounded by a pure C mantle.

Figure 2.5 shows the results for differing initial fractions of C and Fe.

For instance, for an initial 50:50 C/Fe distribution we calculate an energy

release of about 1.9 · 1048 ergs, with less than a 5% relative error between

the two methods. Even this small amount of error decreases as we approach

a pure Fe or C initial state. This is because the density and composition

changes before and after phase separation are now smaller. For instance, if

the model is 99% C uniformly distributed initially, then after phase separation

most of it (99% in fact) is pure C. The contrast between 99% and 100% is small

enough that the local density and composition changes are also small (δXC ∼<

1%, δρ
ρ ∼< 0.1%), which means that the approximation involved in making the

infinitesimal variations in equation 2.5 finite is more accurate. We note that

it is possible to perform such a simplified treatment for a C/Fe white dwarf

model and still obtain meaningful results, while for a C/O model it would not

be possible. This is because µe = 2.0 for both C and O, while µe = 2.15 for

Fe. Thus, ignoring Coulomb effects, C and O have identical equations of state,

while C and Fe are still nontrivially different in this approximation.

The results of this test problem (Figure 2.5) convince us that by applying
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equation 2.5, we are correctly calculating the change in the binding energy of

the configuration, and thus the amount of thermal energy which has been

liberated from structural sources. This shows us that the overall approach to

this problem which we use here, and which has been used in the past, is sound

and accurately describes the physics of phase separation.

6. Results

6.1. 0.6 M¯ White Dwarf Models

In Table 2.1 we give an evolutionary listing of our fiducial sequence (other

sequences are available from the author upon request). This sequence is more

than just a convenient reference model for the rest of our calculations. Given

the observed peak of the masses of isolated white dwarfs in the vicinity of 0.6

M¯ (Weidemann & Koester 1983; Weidemann & Yuan 1989; Bergeron et al.

1995; Lamontagne et al. 1997), this model will be the most useful in our

comparisons with the white dwarf population as a whole. For the surface layer

masses, we have takenMHe/M? = 10−2 andMH/M? = 10−4 as in Wood (1995).

We explore the effect of different surface layer masses later in this section.

We now wish to consider the effect of phase separation on actual evo-

lutionary sequences. We compute this effect in two different ways. Using the

first method, we compare sequences in which the physics of phase separation

is included with those in which it is not. Taking two such sequences, we first

perform a spline fit for each sequence’s age over a fixed luminosity grid, and

then we calculate the difference in ages at each luminosity. The results are

given by the solid line in Figure 2.6, and indicate an age delay of about 1.5
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Fig. 2.5.— The upper panel shows the energy released due to phase separation

as a function of Xc, the carbon mass-fraction. The model is a C/Fe mixture

computed assuming pure Chandrasekhar theory. The solid line comes from

a direct calculation of the change in binding energy, and the dotted line is

obtained from the application of equation 2.5. The lower panel shows the

percent error between these two methods. The total mass of the model is set

to 0.66546 M¯, as in Xu & Van Horn (1992).
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Table 2.1. Fiducial White Dwarf Cooling Sequence without Phase

Separation

logL/L¯ log Age (yr) log Tc Teff logR? logLν/L¯ Mxtal/M?

1.0000 5.917 7.950 4.869 9.131 1.298 0.000

0.6000 6.158 7.891 4.793 9.084 0.946 0.000

0.2000 6.376 7.843 4.710 9.049 0.581 0.000

-0.2000 6.592 7.798 4.623 9.024 0.193 0.000

-0.6000 6.855 7.737 4.533 9.004 -0.230 0.000

-1.0000 7.204 7.660 4.440 8.989 -0.886 0.000

-1.2000 7.429 7.604 4.394 8.982 -1.356 0.000

-1.4000 7.674 7.531 4.346 8.976 -1.956 0.000

-1.6000 7.903 7.448 4.299 8.971 -2.670 0.000

-1.8000 8.097 7.360 4.251 8.967 -3.449 0.000

-2.0000 8.264 7.273 4.203 8.963 -4.248 0.000

-2.2000 8.413 7.187 4.155 8.959 -5.042 0.000

-2.4000 8.550 7.103 4.106 8.956 -5.804 0.000

-2.6000 8.679 7.021 4.058 8.953 -7.279 0.000

-2.8000 8.805 6.940 4.009 8.951 -10.000 0.000

-3.0000 8.930 6.860 3.961 8.948 -10.000 0.000

-3.2000 9.055 6.778 3.912 8.946 -10.000 0.000

-3.4000 9.182 6.694 3.863 8.944 -10.000 0.000

-3.6000 9.317 6.613 3.814 8.942 -10.000 0.059

-3.8000 9.497 6.518 3.765 8.939 -10.000 0.379

-4.0000 9.704 6.350 3.717 8.935 -10.000 0.804

-4.2000 9.825 6.176 3.668 8.933 -10.000 0.961

-4.4000 9.900 6.022 3.618 8.933 -10.000 0.989

-4.6000 9.953 5.891 3.569 8.932 -10.000 0.990

-4.8000 9.996 5.777 3.519 8.932 -10.000 0.990
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Gyr; this is for an initially homogeneous 50:50 C/O profile with an assumed

metallicity of Z = 0.000 in the opacities.

The other method involves applying equation 2.4 to a sequence under-

going phase separation, which is shown by the dotted line Figure 2.6. This

yields an asymptotic value for the age delay of 1.38 Gyr, which is within 5% of

the age difference computed with the first method. This result indicates that

the basic physics which is operating is well-described by equation 2.4, i.e., the

energy being released by phase separation is mostly being radiated in a given

timestep. For the remainder of the results quoted here, the age delays have

been calculated using the second method (equation 2.4), since this proves to be

more accurate for the cases involving smaller energy releases and age delays.

We now study the effect of the initial composition profile on the age

delays. We use three different profiles: one which is a homogeneous 50:50 mix

(Figure 2.3), one calculated by Salaris et al. (1997) (Figure 2.4), and one given

by equation 2.7. Our results are summarized in Table 2.2, where the columns

labeled SC and IIO indicate that we have used the phase diagrams of Segretain

& Chabrier (1993) and Ichimaru et al. (1988), respectively. Near the centers

of these models, we found that the initial/final oxygen mass-fraction changed

by only about 15% in the initially stratified case in Figure 2.4, as compared

to 40% in the homogeneous case in Figure 2.3. Because less matter is being

redistributed in the initially stratified case, we would expect less energy to be

released as a result. Using the phase diagram of Segretain & Chabrier (1993)

applied to a 0.6 M¯ white dwarf model, we find that in the homogeneous case

2.38 · 1046 ergs are released whereas in the initially stratified case in Figure

2.4 only 1.03 · 1046 ergs are released. These energies result in age delays of
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Fig. 2.6.— The solid line is the age difference between two 0.6 M¯ white dwarf

evolutionary sequences with Z = 0.0, one of which is undergoing phase separa-

tion. The dotted line is the result of applying equation 2.4 to the evolutionary

sequence undergoing phase separation, which yields an asymptotic value for

the age delay of ∼ 1.4 Gyr. At complete crystallization (logL/L¯ ∼ −4.6), the
value given by the direct evolutionary calculation is within 5% of this, indicat-

ing that the basic physics which is operating is well-described by equation 2.3.
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1.38 Gyr and 0.62 Gyr, respectively. Thus, the initial composition profile has a

large effect on the calculated age delays. In addition, the Ichimaru et al. (1988)

phase diagram produces smaller composition changes and hence smaller values,

reducing the Segretain & Chabrier age delays by approximately one-third.

We now consider the effect of a nonzero metallicity in the opacity tables.

The effect of varying the metallicity from Z = 0.000 to Z = 0.001 results in

a change of less than 0.016% in the energies released, and is barely detectable

numerically. The main effect of changing the metallicity is to affect the lumi-

nosity range at which the phase separation energy is released, which in turn

affects the age delay, tdelay. For both the homogeneous and stratified case, the

average luminosity during crystallization changes by less than 3% as Z is varied

from 0.000 to 0.001, and hence tdelay also changes by less than 3%. Thus, the

age delay is essentially insensitive to the metallicity assumed for the opacities.

Finally, we summarize the effect of different surface layer masses in

Table 2.3. ForMHe/M? = 10−3 andMH/M? = 10−5 (comp1), we find maximum

age delays of 1.45 Gyr, and for MHe/M? = 10−4 and MH/M? = 10−6 (comp2),

our maximum calculated age delay is 1.56 Gyr. These values represent increases

of 5% and 13%, respectively, over the age delays calculated in our fiducial

Table 2.2. Age Delays for 0.6M¯ Models

Initial Profile Delay (Gyr)
SC IIO

50:50 homogeneous 1.38 0.99

stratified (Salaris et al. 1997) 0.62 0.39

stratified (Wood 1995) 0.30 0.20
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model. For clarity, we note that these calculations are for the age differences

introduced by phase separation alone at these new surface layer masses; the

white dwarf ages themselves change significantly with He layer mass, which

produces a decrease in the calculated ages (without including phase separation)

of ∼ 0.75 Gyr for each order of magnitude increase inMHe. Again, we find that

varying the metallicity in the opacities has a small effect on these numbers, at

only the 1% level.

6.2. The Mass Dependence

The mass of the white dwarf model affects the process of phase separation in

two main ways, as is illustrated in Figure 2.7. First, a more massive white dwarf

has a higher gravity so that more energy is released by the subsequent rear-

rangement of matter. Second, the luminosity at which crystallization occurs is

higher for a more massive white dwarf, which tends to lessen the age-delay for

a given energy release. For example, even though the total energy released in

a 1.2 M¯ model increases by a factor of ∼ 10, the average luminosity increases

by a factor of ∼ 30, and hence there is a net decrease in the time delay relative

to the 0.6 M¯ sequence.

Table 2.3. Age Delays for 0.6M¯ Models with Different Surface Layer Masses

Initial Profile Delay (Gyr)

comp1 comp2
SC IIO SC IIO

50:50 homogeneous 1.45 1.04 1.56 1.12

stratified (Salaris et al. 1997) 0.66 0.42 0.71 0.44

stratified (Wood 1995) 0.32 0.21 0.34 0.23
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Fig. 2.7.— Phase separation energy and average luminosity as a function of

mass. The solid curves are for initially homogeneous 50:50 C/O mixtures, the

dashed curves are for the stratified C/O profile of Figure 2.4 (Salaris et al.

1997), and the dotted curves are for the stratified C/O profile of equation 2.7

(Wood 1995). The upper panel shows the phase separation energy released as a

function of total stellar mass, and the lower panel shows the average luminosity

during the crystallization process, also as a function of total stellar mass.
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The competition of these two effects suggests that there may be a mass

for which there is a maximum age-delay, for a fixed composition profile. This

is indeed the case, as is demonstrated in Figure 2.8. We find that the 0.6

M¯ white dwarf models have the maximum age-delays for a given composition

profile (this was also found by Segretain et al. 1994). The calculated age delay

is only weakly dependent upon the metallicity, as can be seen from the small

difference between the solid and dashed curves. It is strongly dependent upon

the initial profile, however, which can decrease the energy release, and hence

the age-delays, by a factor of three or more, as is shown in Figure 2.8.

From the preceding calculations we find that the two most important

factors influencing the magnitude of the age delays introduced by the physics

of phase separation are the mass of the white dwarf model and its initial C/O

profile. Because the mass range of observed white dwarfs is strongly peaked

around 0.6M¯ (e.g., Lamontagne et al. 1997), we find that the age delay

we calculate is near the maximum possible with respect to this parameter.

In terms of the initial C/O profile, however, the situation is reversed. For

a 0.61M¯ white dwarf model, the profile calculated by Salaris et al. (1997)

reduces the age delay by a factor of ∼ 2 from the 50:50 homogeneous case.

Using the profile of Wood (1995), which is based on results from Mazzitelli

& D’Antona (1986) and D’Antona & Mazzitelli (1989), the reduction factor is

∼ 5.

If we take as our best guess the initial profile of Salaris et al. (1997),

assume a 0.6M¯ white dwarf model with MHe/M? = 10−2 and MH/M? = 10−4,

and use both the Segretain & Chabrier (1993) and Ichimaru, Iyetomi, & Ogata

(1987) phase diagrams, then we obtain age delays in the range of 0.4–0.6 Gyr.
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Fig. 2.8.— Age delay due to phase separation during crystallization as a func-

tion of total mass of the white dwarf model. Curve (a) corresponds to a 50:50

homogeneous initial C/O profile, while curves (b) and (c) are the initial pro-

files shown by the solid lines in Figures 2.4 and 2.3, respectively. The solid

lines are for zero metallicity opacities and the dashed lines are for Z = 0.001,

which shows that our result has little metallicity dependence. All models have

MHe/M? = 10−2 and MH/M? = 10−4.
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7. Conclusions

We find a maximum age delay of ∼ 1.5 Gyr due to phase separation for our

fiducial white dwarf model (M? = 0.6M¯) and a best guess age delay of 0.4–0.6

Gyr. Salaris et al. (1997) have recently calculated a value of ∼ 1 Gyr, using

the evolutionary models of Wood & Winget (1989). If we scale their value to

our present models (assuming an average luminosity during crystallization for

their models of logL/L¯ ' −4.1), then we obtain 0.75 Gyr, which is in basic

agreement with our estimate of 0.62 Gyr. The differences in these models are

mainly due to the different surface layer masses adopted; more recent astero-

seismological analyses of the class of DA’s suggests that the appropriate surface

layer masses are MHe/M? ∼ 10−2 and MH/M? ∼ 10−4 (Clemens 1993, 1995),

and these are the values which we have assumed.

The most important factors influencing the size of the calculated age

delay are the total stellar mass and the initial composition profile. We find

the largest age delays occur in models with masses of ∼ 0.6M¯, near the peak

in the observed white dwarf mass distribution. The best current theoretical

initial C/O profile produces models with smaller age delays, of ∼ 0.6 Gyr. In

addition, if we use the phase diagram of Ichimaru et al. (1988) instead of the

Segretain & Chabrier (1993) phase diagram, then our age delays are reduced by

about one-third. We note that the prescription which we have adopted for the

mixing during crystallization provides an upper bound for the efficiency of this

process, and hence a maximum for the age delay. More realistic treatments of

the mixing process may reduce the age delay. We find that varying the opacities

(via the metallicity) and the surface layer masses has only a small effect (∼<

10%) on the calculated age delays.
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Our calculations do not take into account the possible age delays intro-

duced by the phase separation of heavier trace-element species such as 22Ne,

which may produce significant age delays of 2–3 Gyr (Segretain et al. 1994;

Hernanz et al. 1994). These species would arise from the initial abundance of

metals in the main-sequence stars which later evolved into white dwarfs. This

effect may only be important for Population I stars, however, and would not

therefore affect the calculated ages of the cool white dwarfs which populate the

turndown in the WDLF, since these white dwarfs were formed very early in the

history of the Galaxy (Hernanz et al. 1994). We are currently investigating the

possibility that the magnitude of the theoretical spike in the WDLF produced

by 22Ne deposition, if real, can be used as a diagnostic of the initial metallic-

ity of Galactic clusters and possibly some globular clusters, once sufficiently

complete observations can be made for a given cluster.

In the context of Galactic evolution, mean age estimates for the old-

est Galactic globular clusters (GCs) have recently decreased. For example,

Chaboyer et al. (1998) derive a value of 11.5 ± 1.3 Gyr for these GC’s. Given

the best fit age of 9.5+1.1−0.8 Gyr which Oswalt et al. (1996) derive from their

observed WDLF, there may only be a difference of ∼ 2 Gyr between GC ages

and WDLF ages. In fact, we would expect a delay of at least 1–2 Gyr from the

onset of GC formation to the formation of the Galactic disk, and possibly a

much larger delay, depending on the Galactic formation model used (Burkert,

Truran, & Hensler 1992; Chiappini, Matteucci, & Gratton 1997). Our results

are consistent with this state of affairs since we conclude that the maximum

effect which the phenomenon of phase separation can have on the modeled ages

of the coolest white dwarfs is of order 1.5 Gyr, and is most likely in the 0.6
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Gyr range.



Chapter 3

Pulsations and Crystallization

1. Astrophysical Context

The theoretical study of pulsating crystalline objects extends many years into

the past. One of the first numerical studies was by Alterman, Jarosch, & Pekeris

(1959), who modeled global oscillations of the Earth. Their main interest was in

fitting the oscillation period of 57 minutes which was excited by the Kamchatka

earthquake of 1952. In the process, they examined how the central density in

their models allowed them to match the periods of other oscillation modes

which were also observed to be excited by the earthquake.

In an astrophysical context, Hansen & Van Horn (1979) treated oscilla-

tions in white dwarf models with a crystalline inner core. Since it was known

that 1 M¯ models with Teff ∼ 10,000 K were in the process of crystallizing

(Lamb & Van Horn 1975; Van Horn & Savedoff 1976), Hansen & Van Horn

self-consistently treated the response of the crystalline core to the pulsations.

Their main interest was in explaining the observed period ranges of the ZZ

Ceti’s in terms of low radial order oscillations. They found that the g-mode

periods were decreased by the presence of crystallization, which is contrary to

our present findings.

43
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McDermott, Van Horn, & Hansen (1988) treated oscillations in neutron

star models with a fluid core, a solid crust, and a thin surface fluid “ocean.”

They considered neutron star oscillations as a possible explanation for the

observed irregularities in the timing of subpulses from radio pulsars, and as a

source of the observed periodicities in many X-ray burst sources. Theoretically,

they found g-modes which were trapped in the cores of their models, as well as

those which were trapped in the surface oceans.

Finally, Bildsten & Cutler (1995) considered g-mode oscillations in the

thin surface oceans of accreting neutron star models. Their aim was to explain

the observed 5–7 Hz quasi-periodic oscillations in the brightest accreting neu-

tron star systems. They found a good match to these frequencies for low order,

` = 1 g-modes.

Why, then, does this problem need to be re-examined in the context

of white dwarf stars? As is usually the case in science, new observations and

new circumstances have again made this problem one worth considering, but in

more detail than the general analyses of the past. For example, Hansen & Van

Horn (1979) were concerned primarily with the range of normal mode periods

which are possible given a crystallized core, not with any of the details of how

the periods of high overtone g-modes are affected at the level of 5–10%. At the

time, there were no known high-mass white dwarf pulsators, and precise mode

identifications for any pulsating white dwarf had yet to be done.

That situation has changed with the discovery of pulsations in BPM

37093 (Kanaan et al. 1992), a high-mass ZZ Ceti (see Figure 3.1) which should

be substantially crystallized (Winget et al. 1997); depending on the C/O ratio

in its core, it should be between 50% and 90% crystallized by mass. The Whole
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Earth Telescope (WET) examined this target in the Spring of 1998 and found

at least 8 independent frequencies, three of which had been previously seen by

Kanaan (1996). Thus, the potential to perform asteroseismology on this object

requires us to make a more detailed theoretical investigation of this class of

objects.

One hope is that we will be able to independently determine the crys-

tallized mass fractionMxtal/M¯, and thereby provide a direct test of the theory

of crystallization, now over three decades old (Abrikosov 1960; Kirzhnits 1960;

Salpeter 1961). This subject is relevant to the astronomical community at

large, since phase separation of C and O during crystallization, and, indeed,

crystallization itself, represent the largest sources of systematic uncertainties

in the age of the local Galactic disk as derived from the white dwarf luminos-

ity function. In addition, understanding the internal structure of white dwarfs

may prove vital in fitting cosmological models to Supernova Ia (SNIa) data

(Garnavich et al. 1998), so that systematic differences in the absolute magni-

tudes of the SNIa may be corrected for the evolutionary differences in the SN

progenitors (Höflich, Wheeler, & Thielemann 1998).

2. Review of Nonradial Oscillation Theory

2.1. The Fluid Equations

To a first approximation, most stars may be thought of as fluid spheres. Since

we are interested only in an adiabatic analysis, we may write the fluid equations

for conservation of mass and momentum, supplemented by the equation for the

gravitational potential, which must be satisfied locally (see the discussion in
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Fig. 3.1.— The position of BPM 37093 relative to the other ZZ Ceti’s in

Bergeron et al. 1995 as a function of Teff and M?/M¯. The lines correspond to

constant amounts of crystallized mass fraction assuming a pure oxygen core.

If BPM 37093 has an oxygen core it should be ∼ 90% crystallized, and for a

carbon core, ∼ 50% crystallized.
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Unno et al. 1989 for the following derivation):

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 (3.1)

ρ(
∂

∂t
+ ~u · ~∇)~u = −~∇p− ρ~∇Φ, (3.2)

∇2Φ = 4πGρ (3.3)

where ρ is the density, ~u is the velocity field, p is the pressure, Φ is the gravi-

tational potential, and G is the universal constant of gravitation. Here we are

explicitly ignoring viscous, electromagnetic, and external forces.

We now wish to perturb these equations to obtain the oscillation equa-

tions. If we make an Eulerian perturbation of these equations and then assume

that the equilibrium configuration is a static one (i.e., ~u = 0 and dρ/dt = 0),

then we obtain

∂ρ′

∂t
+ ~∇ · (ρ~v) = 0 (3.4)

ρ
∂~v

∂t
= −~∇p′ − ρ′~∇Φ− ρ~∇Φ′, (3.5)

∇2Φ′ = 4πGρ′ (3.6)

where we have written the perturbed velocity field ~u′ as ~v. Since we wish to

search for modes of the system, we assume a time dependence for all perturbed

quantities of eiσt, e.g., ρ′(t, ~r) ≡ ρ′(~r)eiσt. Since the velocity is just the time

derivative of the displacement ~ξ, we now have

ρ′ + ~∇ · (ρ~ξ) = 0 (3.7)

ρσ2~ξ = ~∇p′ + ρ′~∇Φ + ρ~∇Φ′ (3.8)

for the fluid equations, while equation 3.6 for the gravitational potential is

unchanged in form.
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The final assumption which we will make is that the initial equilibrium

model is spherical. This is a good approximation for stars with weak magnetic

fields and which are slowly rotating, and it has been shown to hold observa-

tionally for individual white dwarfs and pre-white dwarf objects (Winget et al.

1991; Winget et al. 1994). This assumption means that ρ(r) and Φ(r) are a

function of the radial distance r only.

The assumption of spherical symmetry makes possible a particular sep-

aration of variables, in which ρ′(~r) = ρ′(r)Y m
` (θ, φ), and similarly for p′ and Φ′.

The displacement eigenfunction is given by

~ξ =

[

ξr(r), ξh(r)
∂

∂θ
, ξh(r)

1

sin θ

∂

∂φ

]

Y m
` (θ, φ), (3.9)

where

ξh(r) =
1

σ2r

(

p′

ρ
+ Φ′

)

. (3.10)

In the above formulae, ξr and ξh are the radial and horizontal displacements,

respectively, associated with a given mode of frequency σ.

Substituting the above forms in equations 3.6–3.8 and skipping many

steps, we arrive at the following three equations (Unno et al. 1989):

1

r2
d

dr
(r2ξr)−

g

c2s
ξr +

(

1− L2`
σ2

)

p′

ρc2s
=
`(`+ 1)

σ2r2
Φ′ (3.11)

1

ρ

dp′

dr
+

g

ρc2s
p′ + (N 2 − σ2)ξr = −

dΦ′

dr
(3.12)

1

r2
d

dr

(

r2
dΦ′

dr

)

− `(`+ 1)

r2
Φ′ = 4πGρ

(

p′

ρc2s
+
N2

g
ξr

)

, (3.13)

where g is the acceleration due to gravity, cs is the sound speed,

L2` ≡ `(`+ 1)c2s/r
2
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is the Lamb acoustic frequency, and

N2 ≡ g

(

1

Γ

d ln p

dr
− d ln ρ

dr

)

(3.14)

is the famed Brunt-Väisälä frequency. Since equation 3.13 is a second-order

equation for Φ′, this equation is equivalent to two first-order equations. Thus,

the three equations 3.11–3.13 represent a fourth-order problem for the solution

of linear, adiabatic oscillations of a spherical model star.

2.2. Asymptotic Theory

In this section we perform a local analysis which forms the basis for our un-

derstanding of mode propagation in white dwarf stars. To begin, we make the

Cowling approximation (Cowling 1941), which simply says that we will ignore

perturbations to the gravitational potential Φ and its derivatives. This is a

valid approximation in the high ` and high k limit, and is also a very good

approximation for g-modes in white dwarf stars, which are primarily envelope

modes; we have found numerically that the Cowling approximation affects the

mode periods at less than a 0.2% level, even for k = 1, ` = 1 modes. As a result

of this approximation, we do not need to consider equation 3.13 any further.

For equations 3.11 and 3.12, we make the following change of variables

(Unno et al. 1989):

ξ̃ ≡ r2ξr exp

(

−
∫ r

0

g

c2s
dr

)

(3.15)

η̃ ≡ p′

ρ
exp

(

−
∫ r

0

N2

g
dr

)

(3.16)

This results in two coupled, first-order equations for ξ̃ and η̃:

dξ̃

dr
= h(r)

r2

c2s

(

L2`
σ2
− 1

)

η̃ (3.17)
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dη̃

dr
=

1

r2h(r)

(

σ2 −N2
)

ξ̃, (3.18)

where

h(r) ≡ exp

[

∫ r

0

(

N2

g
− g

c2s

)

dr

]

.

If we now search for solutions which are locally propagating in space, i.e.,

ξ̃, η̃ ∝ exp(ikrr),

then we find

k2r =
1

σ2c2s
(σ2 − L2`)(σ2 −N2), (3.19)

which is a local dispersion relation relating the frequency of a mode σ to its

spatial radial wavenumber, kr.

In order for a mode to be propagating in a given region, we must have

kr real, i.e., k2r > 0. If we consider the high-frequency limit of equation 3.19

for σ2 À L2` , N
2, then we find that

kr =
σ

cs
.

From a complete asymptotic analysis, we find a condition analogous to the

Bohr-Sommerfeld quantization condition, namely
∫

krdr = kπ. Inserting this

here, we find

σk =
πk

∫ r2
r1 dr/cs

, (3.20)

where r1 and r2 are the inner and outer turning points where kr = 0. We see

that the frequency of these modes depends mainly on the sound speed, so the

primary restoring force for these modes is pressure; these modes are therefore

called p-modes. We note that the frequencies of these modes as a function of

radial overtone number k are evenly spaced.
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Taking the low-frequency limit of equation 3.19 (σ2 ¿ L2` , N
2), we

obtain

kr =
L`N

σcs
=

[`(`+ 1)]1/2N

r

1

σ
.

Applying the same quantization condition, we find that the frequency relation

is

σk =
[`(`+ 1)]1/2

kπ

∫ r2

r1

N

r
dr, (3.21)

or in terms of period this reads

Pk =
kπ

[`(`+ 1)]1/2

[∫ r2

r1

N

r
dr
]−1

. (3.22)

This relation depends only on the Brunt-Väisälä frequency, which is the local

oscillation frequency for fluid elements due to buoyant/gravitational return

forces; these modes are therefore called g-modes. We see that the g-modes are

evenly spaced in period as a function of k, in contrast to the p-modes.

We now wish to derive a relation between the horizontal and vertical

displacements of a mode near the surface. If we take as an idealized outer

boundary condition that the pressure and density vanish there, then the La-

grangian variation of the pressure should also be zero, i.e., δP = 0. Since the

connection between Lagrangian and Eulerian variations of a function f is

δf = f ′ + ~ξ · ∇f,

this condition translates into

0 = P ′ + ~ξ · ∇P

= P ′ + ξr
dP

dr

= P ′ − ρgξr,
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so

P ′ = ρgξr, (3.23)

where we have used the condition of hydrostatic equilibrium. Since we are

employing the Cowling approximation (Φ′ = 0), equation 3.10 gives P ′ as

P ′ = ρσ2rξh,

which combined equation 3.23 gives the following relation for the ratio of hor-

izontal to vertical displacements at and near the surface:

ξh
ξr

=
GM

R3σ2
. (3.24)

Here, M and R are the total stellar mass and radius of the model, respectively.

We see from equation 3.24 that the low-frequency g-modes have ξh À ξr,

which means that the displacements near the surface are mainly horizontal. For

the high-frequency p-modes we have ξr À ξh, so these modes have predomi-

nantly vertical displacements near the surface. We summarize these results for

the two different classes of spheroidal modes below:

p-modes

σ2 > L2` , N
2, “high-frequency limit”

σk ∼ kπ
∫ r2

r1
dr/cs

displacements become vertical near the surface

frequencies of consecutive radial overtones are evenly spaced

g-modes

σ2 < L2` , N
2, “low-frequency limit”

Pk ∼ 2π2k√
`(`+1)

[

∫ r2
r1 Ndr/r

]−1
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displacements become horizontal near the surface

periods of consecutive radial overtones are evenly spaced

Based on these considerations, the pulsational properties of a model

are locally determined by N 2 and L2` . Thus, the radial dependence of these

two functions is a useful diagnostic for the frequency spectrum of a given white

dwarf model. We call such a plot a “propagation diagram,” an example of which

is shown in Figure 3.2, where we have labelled the high- and low-frequency do-

mains of the p- and g-modes. We note that the bumps in N 2 and L2` correspond

to C/O, He/C, and H/He transition zones. We use the modified Ledoux pre-

scription as outlined in Brassard et al. (1991) to compute the Brunt-Väisälä

frequency in a composition transition zone. In addition, we sometimes use the

Schwarzschild criterion, which ignores the changing composition profiles and

uses equation 3.14 directly. Although this is unphysical, it often has the use-

ful side effect of minimizing the contribution of the transition zones, which is

useful for comparison purposes.

Finally, to remind ourselves of the horizontal nature of g-mode pulsa-

tions implied by equation 3.24, as well as the angular structure contained in

3.9, we show a cross-sectional view of a particular g-mode in Figure 3.3, where

the arrows indicate the direction of motion of a given fluid element. The mode

pictured is a spheroidal mode with ` = 1 and m = 0. The cross section which

we have taken is a plane which intersects the polar axis of the model. The

radial coordinate is again taken to be x = ln r/p.



54

Fig. 3.2.— A propagation diagram showing N 2 and L2` as a function of ln r/p

(lower axis) and − log(1 −Mr/M?) (upper axis); the center is on the left and

the surface is on the right. The region of propagation of a 600 second g-mode

is shown. The vertical dashed lines are labelled by the percent mass which

is interior to these regions, i.e., the 90% line indicates the boundary at which

90% of the mass of the model is inside this point. We see that a model which

is this crystallized now has an inner turning point for g-mode propagation

considerably farther out than in the uncrystallized case.
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Fig. 3.3.— A cross-sectional view of an ` = 1,m = 0 g-mode, where the arrows

indicate the direction of motion of the fluid elements. The motions are mainly

horizontal, with a considerable amount of shear between different radial layers.
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3. The Effect of a Crystalline Core

How does a crystalline core affect the oscillations of a star? As we introduce a

solid core into our models, two things occur: (1) A new class of modes appears

(the torsional/toroidal modes, in this case), and (2) the pre-existing p- and

g-modes are modified. We now treat these cases separately.

3.1. The Torsional Modes

The torsional modes, or t-modes, are very special nonradial modes character-

ized by zero radial displacement and zero compression, i.e., ξr and ~∇ · ~ξ both

vanish, where ~ξ is the displacement vector. In the context of general stellar

pulsation models, these modes are called toroidal modes. In models which are

non-magnetic and non-rotating and are fluid throughout, these modes have

zero frequency and therefore correspond to steady-state fluid motions. In the

case of nonzero rotation, these modes can have nonzero frequencies and are

called Rossby or r-modes. The presence of solid regions in a model with finite

shear also allows the toroidal modes to have a nonzero frequency. In this case,

we call the modes torsional or t-modes.

Waves may propagate such that either the displacement of the material

medium is parallel to the direction of propagation of the wave, or is perpen-

dicular to it. Landau & Lifshitz (1975) use the nomenclature longitudinal and

transverse, respectively, for such waves propagating in a solid. In the geophys-

ical literature, these waves are also commonly referred to as pressure (P) and

shear (S) waves, respectively. The square of the velocity of propagation for
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each is

v2p =
λ+ 2µ

ρ
(3.25)

v2s =
µ

ρ
, (3.26)

where λ and µ are the Lamé elastic coefficients, with λ defined by

λ ≡ K − 2

3
µ

= Γ1P −
2

3
µ,

where K = Γ1P is the bulk modulus. The quantity µ is also known as the shear

modulus. We use the expression for it given in Hansen & Van Horn (1979),

µ ∼ 0.37n
(Ze)2

a
,

where a is the radius of a sphere containing one ion of charge Ze, and 1/n =

(4/3)πa3. As we will show, none of our results depend sensitively on the precise

value of the shear modulus.

In the following, we use the equations derived by Hansen & Van Horn

(1979) for t-mode oscillations in order to obtain a local dispersion relation for

these modes. The displacement eigenfunction for the t-modes has the following

separation:

~ξ =

[

0 , ξh(r)
1

sin θ

∂

∂φ
,−ξh(r)

∂

∂θ

]

Y m
` (θ, φ). (3.27)

If we now define

z1 =
ξh(r)

r2
,

z2 =
µ

r

(

dξh(r)

dr
− ξh(r)

r

)

,
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the equations of oscillation become

rz′1 = −z1 +
1

µ
z2

rz′2 = [µ(ˆ̀− 2)− σ2ρr2]z1 + 4z2, (3.28)

where ˆ̀≡ `(` + 1) (Hansen & Van Horn 1979). If we rewrite these equations

in terms of z̃1 = rz1 and z̃2 = z2/r
4, we have

rz̃′1 =
r4

µ
z̃2

rz̃′2 =
1

r6
[µ(ˆ̀− 2)− σ2ρr2]z̃1. (3.29)

If we assume that z̃1, z̃2 ∝ eikrr, then we find the local dispersion relation:

k2r =
1

v2s
(σ2 − T 2

` ). (3.30)

Here, T 2
l ≡ (ˆ̀− 2)v2s/r

2 is the “torsional frequency”.

These modes propagate in regions which have nonzero shear (the crys-

tallized regions) and which have σ2 > T 2
` . Their frequency spectrum is equally

spaced, as is the case with p-modes, with

σk ∼
kπ

∫

dr/vs
.

As we might expect, the k = 1 period for these modes goes like R?/vs, the

crossing time for a shear wave; this period is typically of order 10–20 sec.

In Figure 3.4, we show a propagation diagram for t-modes with ` = 2. If

we imagine a model which is 90% crystallized, then the t-mode can potentially

propagate anywhere inside the 90% mass point in the model. If the mode is an

` = 2 mode, then its region of propagation is restricted further to the region for

which its frequency is greater than the torsional frequency, i.e., σ2 > T 2
` . For
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a 1 sec mode, this corresponds to the part of the horizontal dotted line which

lies to the left of the 90% point. We note that for all the ` = 1 modes, we have

T 2
` = 0, so these modes propagate through the entire crystallized region.

From an observational standpoint, the longest period t-modes should

have periods ∼ 20 sec, which is too short to explain the oscillations observed

in the ZZ Ceti’s, which have periods in the 100’s of seconds. In addition, these

modes cannot couple (in the linear limit) to the fluid at the solid/fluid inter-

face, so these oscillations cannot propagate from the crystalline core through

the fluid to the surface. Also, the different angular structure of the t-modes

(equation 3.27) should make any nonlinear coupling between these modes and

the ordinary p- and g-modes very weak. To the first nonlinear order this cou-

pling will be zero. We therefore expect these modes to be unobservable unless

crystallization has proceeded out into the photosphere; the oldest white dwarfs

in the Galaxy should still be far too hot for this to have occurred. We therefore

turn our attention to the p- and g-modes.

3.2. The Spheroidal Modes

p-modes

For pressure waves in a solid medium, the velocity vp is given by equation 3.25.

If we treat the non-zero µ as a perturbation, we then find that

δvp
vp
∼ 2µ

3Γ1P
,

where δvp is the change in vp due to the finite shear modulus. In the cores

of our 1.1 M¯ models, we typically find µ/p ∼ 0.01. Thus, p-mode periods

are affected at the level of only a few percent by the presence of a crystalline
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Fig. 3.4.— A propagation diagram for t-modes for ` = 2. The t-modes propa-

gate only in the crystallized region, e.g., only to the left of the 90% crystallized

line for a 90% crystallized model. We note that for ` = 1 we have T 2
` = 0, so

the modes propagate throughout the entire crystallized region in this case.
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lattice. They are therefore of no more interest than are ordinary p-modes in

the context of the observed pulsations of the DAV and DBV white dwarfs.

g-modes

We concentrate the remainder of our analysis on the g-modes, since these are

the modes which are believed to be responsible for the pulsations observed in

the white dwarf variables. Because g-modes have large shears associated with

their fluid motions, we expect the nonzero shear modulus µ of the solid to have a

significant effect on them. Qualitatively, we may ask when the return force due

to a finite shear modulus is approximately equal to the return force normally

experienced by fluid elements in the absence of such shear (e.g., Bildsten &

Cutler 1995). Algebraically, the shear return force is equal to or exceeds the

ordinary return force of the fluid when

µ

ρσ2h2
≥ 1,

where h ≡ P/|dP/dr| is a pressure scale height.

In our models, we find that µ
ρσ2h2

> 1010, which indicates that the g-

modes are completely altered in the crystallized region. Thus, a g-mode which

is propagating in the fluid region will find a complete mismatch as it attempts

to propagate into the crystallized region. We therefore expect nearly complete

reflection of the g-mode at such a boundary, with the result that the g-modes

are essentially confined to the fluid regions of our models.



62

4. Numerical Analysis

4.1. The Global Solution

We now examine the above assertion and offer a numerical justification for it.

Our approach is based on the work of Hansen & Van Horn (1979); we treat

the “global” problem in that we allow the solid cores of our models to respond

to the oscillations. We have used the Cowling approximation to simplify the

pulsation equations, as was also done in Hansen & Van Horn (1979). Since

g-modes in white dwarfs are primarily envelope modes, this is an excellent

approximation and hardly affects the accuracy of our calculated periods, as

was discussed at the beginning of section 2.2. The details of the rest of our

treatment are summarized in Appendix A, where we describe the oscillation

variables, the equations which they obey, the central boundary conditions, and

the connecting conditions at the solid/fluid interface.

In Figure 3.5, we plot the radial and horizontal displacements of a par-

ticular mode. As is true of all the g-modes we have examined, the amplitude of

the fluid motions is decreased by ∼ 3 orders of magnitude in the solid as com-

pared to the fluid. One other feature of the oscillations is that the horizontal

displacement is discontinuous at the solid/liquid interface. In the approxima-

tion of zero viscosity and laminar flow, the fluid is free to slide over the solid

surface. In reality, a turbulent boundary layer would probably form in this

region, which would tend to dissipate the pulsation energy.

Since the kinetic energy density depends on the square of the displace-

ment of a mode, we would expect it to be similarly attenuated in the solid core.

This is indeed the case and is illustrated in Figure 3.6. Here we see that the
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Fig. 3.5.— The log of the absolute values of the radial (upper panel) and

horizontal (lower panel) displacements as a function of ln r/p. Note that ξr is

continuous at the solid/crystal interface at ln r/p ∼ −34, but that ξh is not.

The magnitudes of both ξr and ξh are reduced by ∼ 3 orders of magnitude as

they penetrate the solid region.
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kinetic energy is reduced by more than 6 orders of magnitude in the solid as

compared to the liquid. Since the kinetic energy is an indicator of how a given

mode samples the different regions of a model, we conclude that it is a very

good approximation to treat the g-modes as excluded from the solid cores of

our models. We will demonstrate the validity and the self-consistency of this

approach in the following section.

4.2. The “Hard-Sphere” Boundary Condition

As suggested in the previous section, we may be able to reproduce the effects of

crystallization on g-mode pulsations merely by applying a hard sphere bound-

ary condition at the solid/liquid interface. By this we mean that the radial

displacement is set to zero (ξr = 0) and the horizontal displacement is left to

be arbitrary.

We have calculated the fractional difference between periods calculated

with the “hard-sphere” approximation and those calculated with the “global”

treatment. In Figure 3.7 we plot this difference for periods between 50 and

1000 sec with ` = 1. The crystallized mass fraction is taken to be 0.9, and

the mass of the model is 1.1 M¯. We find that the fractional difference in

periods is less than 1 part in 104 for both ` = 1 and 2 modes, and that the

absolute error in the calculated periods over this range never exceeds 0.05

sec. We therefore conclude that the “hard sphere” boundary condition at the

solid/fluid interface accurately represents the physics of g-mode oscillations in

models with crystalline cores. Bildsten & Cutler (1995) found exactly the same

approximation to be valid in their treatment of g-modes in the surface oceans

of accreting neutron star models.
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Fig. 3.6.— The log of the kinetic energy as a function of ln r/p. The sharp

drop of over 6 orders of magnitude in the kinetic energy at ln r/p ∼ −34 is due

to the solid/crystal interface. The g-mode essentially does not penetrate into

the crystallized region.
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Fig. 3.7.— The fractional period difference δP/P as a function of period. This

difference is always less than one part in 104, which means that by using the

“hard sphere” approximation, our errors in period are less than 0.1 sec for this

range of periods, and in fact, are less than half of this. The same is true for

the ` = 2 modes.
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Before proceeding to the detailed numerical calculations, we wish to

convince the reader that crystallization will have a measurable effect on the

periods. In Figure 3.8 we have plotted the kinetic energy per unit x = ln r/p,

so that the area underneath the curve represents the weight of each region’s

contribution to the total kinetic energy, as a function of x. The vertical dashed

lines indicate different mass points in this model. For instance, if the model is

90% crystallized, then the kinetic energy to the left of the 90% line is eliminated

from the mode. By visual inspection, this is of order 10% of the kinetic energy

in the mode, so we might well expect that the period of this mode is affected

at the 10% level. In fact, we will see in the next section that the periods can

be shifted by even larger amounts.

Merely for purposes of contrast, we have included a plot similar to that

in Figure 3.8, but for a p-mode; the mode displayed is an ` = 1 mode. This

shows that the kinetic energy is distributed differently in a p-mode, much deeper

in the model. As we will see in the next section, this is a consequence of the

“region of period formation” being deeper for p-modes than g-modes in white

dwarf models.

5. The g-mode Periods as a Function of Mxtal/M?

5.1. Asymptotic Relations

The kinetic energy argument in section 4.2. tells us that we can expect the g-

mode periods to change measurably as the crystallized mass-fraction increases

from 0 to 90%. With this in mind, we re-examine the asymptotic formulae for
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Fig. 3.8.— The kinetic energy per unit x = ln r/p. The vertical dashed lines

indicate the mass-fraction of the model interior to a given point. For instance,

the dashed line at x ∼ −34 defines the point in the model at which Mr/M? =

0.90.
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Fig. 3.9.— The kinetic energy per unit x = ln r/p of an ` = 1 p-mode. The ver-

tical dashed lines are present for easy reference to Figure 3.8, but we point out

that the p-mode is able to propagate essentially unchanged into the crystallized

regions of the model.
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g-mode periods (e.g., Unno et al. 1989):

Pk ∼ k〈∆P 〉,

〈∆P 〉 = 2π2
√

`(`+ 1)

[∫ r2

r1
Ndr/r

]−1

, (3.31)

where we have written 〈∆P 〉 for the mean period spacing between consecutive

radial orders. Since the g-modes are excluded from the crystallized region, the

inner turning point r1 is now a function of Mxtal/M?. As we allow the model

to crystallize while holding all other structural parameters constant, r1 moves

outward, so the integral in equation 3.31 decreases, with the result that 〈∆P 〉

and Pk both increase.

As a heuristic tool, we would like to plot the elusive “region of period

formation,” which would tell us visually the weight which the different regions

of the star have in determining the period of a mode. This problem has been

examined several times in the past, for example by Kawaler, Winget, & Hansen

(1985), Schwank (1976), Goosens & Smeyers (1974), and originally by Epstein

(1950). The aim in such analyses was not only to determine the broad regions

of a given model which the modes sample, but also to note the differences in

the way distinct modes sample a model.

To simplify matters, we examine this weight function in the asymptotic

limit of high k and `. For g-modes, we have to be content to determine a

“region of frequency formation.” We find from equation 3.21 that the relative

contribution to the total frequency per unit radius is

dσ

dr
≈ N

r
,
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which depends only on N and r. In order to expand the radial axis and make

the resulting functions easier to examine, we choose x = ln r/p as our radial

coordinate. Then this becomes

dσ

dx
≈ N

1 + V
, (3.32)

where V ≡ Γ1gr/c
2
s. We emphasize that the appearance of the sound speed c2s

in the variable V is purely a result of the above radial coordinate change, and

does not reflect a dependence of g-mode frequencies on cs.

In Figure 3.10, we plot dσ/dx versus x for a 1.1 M¯ model with

logMHe/M? = −3 and logMH/M? = −5. The three spikes in dσ/dx corre-

spond to the composition transition zones O/C, C/He, and He/H. From in-

spection of this figure, we would expect the C/He transition zone to have the

least effect on the g-mode periods, whereas the O/C transition zone in the core

and the He/H transition zone in the envelope should both have a large effect.

Numerically, Bradley (1993b) has found that the average period spacing and

mode trapping effects to be most sensitive to the hydrogen layer mass, and

least sensitive to the thickness of the helium layer.

The above discussion suggests that one way to idealize the composition

transition zones while still retaining their mode trapping properties is to treat

the corresponding bumps in the Brunt-Väisälä frequency as delta functions, i.e.,

something which is infinitesimally thin yet still has a finite area underneath it.

In this limit, the Brunt-Väisälä frequency itself would be discontinuous across

the transition zone, having different values on each side. This was treated

numerically by Winget, Van Horn, & Hansen (1981) through the use of “jump

conditions” (Gabriel & Scuflaire 1979).
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Fig. 3.10.— The frequency (period) formation region for g-modes in a 1.1 M¯

model. The three spikes are all composition transition zone features, which

from left to right are due to the O/C, C/He, and He/H transition zones.
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It is worth commenting on the similarities between the distribution of

kinetic energy in Figure 3.8 and the shape of the g-mode period formation

region in Figure 3.10. The kinetic energy plot is for a numerically determined

mode, whereas the period formation region is in the high k limit. The value of

N/(1+V ) in Figure 3.10 should correspond to to the wavelength of oscillations

as a function of x in Figure 3.8. This is in fact the case, since we see that peaks

in Figure 3.10 correspond to rapid spatial oscillations in the kinetic energy

density. Similarly, the small value of N/(1+V ) at x ∼ 5–10 results in a longer

spatial wavelength in the oscillations of the kinetic energy density at this value

of x.

We also note that the overall envelope of the kinetic energy is similar in

shape to Figure 3.10. The kinetic energy dE in a shell dr is given by

dE ≈ ρr2dr
(

ξ2r + `(`+ 1)ξ2h
)

≈ ρr2drξ2h,

where we have used the fact that ξh À ξr for g-modes. If we now substitute

for ξh the asymptotic value for it taken from Unno et al. (1989), then we find

dE

dr
≈ ρr2ξ2h

≈ ρr2
[

N

ρ1/2r2
w(r)

]2

≈ ρr2
[

N

ρ1/2r2
1√
kr

cos
(∫ r2

r
krdr

′
)

]2

≈ N2

r2kr
· 1
2

≈ N2

r2N/r

≈ N

r
, (3.33)
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where w(r) is an intermediate function defined in the asymptotic solution, we

have replaced the rapidly oscillating cos2 by its average value of 1/2, and we

have discarded all factors which do not have a radial dependence. Thus, we see

that in the asymptotic limit the kinetic energy samples the model in the same

way as does the period for g-modes.

We feel compelled to include a similar figure for a 0.6 M¯ model, since

the peak in the observed white dwarf mass function is in the neighborhood

of 0.6 M¯ (Weidemann & Koester 1983; Weidemann & Yuan 1989; Bergeron

et al. 1995; Lamontagne et al. 1997). In Figure 3.11, we show the region

of period (frequency) formation for a 0.6 M¯ model which otherwise has the

same set of parameters as the more massive model. Here we see that the

C/He transition zone should have a less dramatic effect on the average period

spacing. In addition, the g-modes sample the core less in the more massive

model. This makes sense since the higher mass model is denser in its core, so

the Fermi energy of its electrons is higher. At the same temperature, this makes

the pressure/density relationship closer to adiabatic. Since the Brunt-Väisälä

frequency is the difference between the actual density gradient in the model

and the adiabatic density gradient, the Brunt-Väisälä frequency is smaller in

the core of the higher mass model, which results in the g-modes being forced

farther out into the envelope.

For completeness, we wish to consider the period formation region for

p-modes. From equation 3.20, we have

dP

dr
≈ 1

cs
,
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Fig. 3.11.— The period (frequency) formation region for g-modes in a 0.6 M¯

model.
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so again using x = ln r/p as the radial variable, we have

dP

dx
≈ r

cs(1 + V )
, (3.34)

where P is the mode period, cs is the sound speed, and the other variables

have the same meaning as in equation 3.32. In Figure 3.12 we plot dP/dx

for p-modes, where the model used is identical to the 1.1 M¯ model used in

Figure 3.10. The period formation region for p-modes in this model is weighted

more toward the core than it is for the g-modes. This confirms our picture of

g-modes in white dwarfs as “envelope” modes and p-modes as “core” modes.

In addition, the energy density in the asymptotic limit has exactly the same

weighting as does the period formation region, i.e., after an asymptotic analysis

similar to the g-mode case, we find

dE

dr
≈ 1

cs
. (3.35)

We see that the envelope of the kinetic energy in Figure 3.9 is quite similar in

shape to Figure 3.12, reinforcing our conclusion.

5.2. Numerical Results

We now wish to make a comparison between the functional form of the period

spacing implied by equation 3.31 and that derived from direct numerical cal-

culations. To do this, we normalize 〈∆P 〉 to the average period spacing in the

uncrystallized case, denoted by 〈∆P 〉0. Such a comparison is shown in Figure

3.13, where the solid line gives the analytic relation and the filled circles are

the result of a numerical pulsational analysis of ` = 2 periods between 500

and 1000 sec. We have made the model, a 1.1 M¯ C/O core model, artificially
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Fig. 3.12.— The period formation region for p-modes in a 1.1 M¯ model

identical to that used in Figure 3.10. Note that the period formation region for

p-modes is much deeper than the region for g-modes shown in Figure 3.10.
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smooth by using the Schwarzschild criterion for the Brunt-Väisälä frequency,

which essentially removes the bumps from the Brunt-Väisälä frequency and

therefore minimizes mode trapping. The agreement between the two methods

is extremely good.

We now examine the more realistic case, where we use the modified

Ledoux criterion for the Brunt-Väisälä frequency (bumps and all). This plot

is shown in Figure 3.14. Although the overall shape of the plot has changed

somewhat, the agreement between the asymptotic and numerical results is still

quite good. The observed “kink” for 0.75 ≤ Mxtal/M? ≤ 0.90 is caused by

the oxygen mass-fraction decreasing from 0.80 to 0.00 in this range. If we

examine Figure 3.10 for the period formation region and we imagine moving

the crystallization region to the right, we see that as we encounter the O/C

transition zone, the area under the curve doubles, so we would expect the slope

of the curve in Figure 3.14 to double as well, which is what we find.

An equivalent statement to the period spacing increasing withMxtal/M?

is that the modes themselves are getting farther apart in period, so their periods

must also be increasing. To illustrate this, we show how a spectrum of mode

periods evolves continuously withMxtal/M?. Since mode identification between

different models is not a simple matter, we have calculated the spectrum of

modes on a fine enough mesh in Mxtal/M? so that the period changes are

small compared to the distances between the periods themselves. We then

identify a given mode at one mesh point with the nearest mode in period of

the neighboring mesh point.

The result of this calculation for ` = 2 periods is shown in Figure 3.16,

where the model considered is a 1.1 M¯ with Teff = 11, 800 K, MHe/M? = −3,
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Fig. 3.13.— A comparison of analytical (solid line) and numerical (filled circles)

period spacings, as a function of Mxtal/M?, where each has been normalized

to the period spacing in the uncrystallized case. In order to minimize mode

trapping effects, the Schwarzschild criterion has been used to compute the

Brunt-Väisälä frequency.
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Fig. 3.14.— The same as Figure 3.13, except that the modified Ledoux pre-

scription has been used to calculate the Brunt-Väisälä frequency. The “kink”

for 0.75 ≤Mxtal/M? ≤ 0.90 is due to the changing C/O profile in the core.
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Fig. 3.15.— The same as Figure 3.14, except that periods between 500 and

700 sec have been used to define the average period spacing from the pulsation

calculations; we have picked this range of periods to mimic that observed in

BPM 37093. Here we see that mode trapping effects produce significant devi-

ations from the asymptotic relation, and make it difficult to to determine the

asymptotic value of 〈∆P 〉.
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and MH/M? = −5. We have used the “hard-sphere” approximation for the

solid/liquid boundary and the full Ledoux prescription for the Brunt-Väisälä

frequency in calculating these periods; we have varied the parameter Mxtal/M?

from 0.00 to 0.99 in increments of 0.01. We note that the periods either appear

to be increasing or are relatively constant. In fact, even in regions in which the

period of a given mode is changing slowly, its period is still slightly increasing.

Figure 3.16 represents the most detailed calculation to date showing

how g-mode periods in white dwarf models evolve as a single parameter is

slowly varied. As such, it exhibits many interesting features. First, for a given

degree of crystallization, some modes are much more sensitive to changes in

Mxtal/M? than are other modes. This is because none of these modes has a

period large enough to be in the asymptotic limit, so they each sample the

model differently. For instance, those modes which preferentially sample the

deep interior of the model will be more strongly affected by a change in the

amount of crystallization.

A second, related feature concerns how a pair of modes appears to ap-

proach and then move away from each other as the degree of crystallization

is increased. This is reminiscent of the “avoided crossing” behavior found by

Aizenman, Smeyers, & Weigert (1977). They found that two modes which

approached each other in frequency were prevented from having the same fre-

quency, and were forced to “veer away” from each other. In the process of

this near miss, however, the modes exchanged their characteristic properties.

The two lowest period modes pictured in Figure 3.16 have what appears to

be an avoided crossing at Mxtal/M? = 0.65. To the left of this point, the

lower period mode has more of its kinetic energy deep in the model near the
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Fig. 3.16.— The evolution of ` = 2 g-mode periods as a function of the crystal-

lized mass-fraction. We see that in any region, the periods are either increasing

or relatively constant.
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solid/fluid interface, while to the right of this point it is the higher period mode

which has its kinetic energy deeper. Thus, the modes do switch character at

the “avoided crossing” point. This suggests that we may be seeing the same

behavior described by Aizenman, Smeyers, & Weigert (1977), but in a different

context.

Our general result that the g-mode periods increase due to the presence

of crystallization is not what was found by Hansen & Van Horn (1979), who

claimed that the g-mode periods became shorter when the finite shear of the

solid core was included. We believe that the resolution of this disagreement lies

in a re-interpretation of their calculated periods, not in the periods themselves.

Hansen & Van Horn (1979) calculated the periods of k = 1 and 2 modes for

` = 1, 2, and 3, in both the fluid case and in the case of a 99.9% crystallized

core. They found that in the crystallized case, the k = 1 periods had decreased

by approximately a factor of two compared to the fluid case; for example, the

` = 1 period decreased from 193.8 sec to 99.8 sec. Our interpretation is that

the 99.8 sec mode is actually a new mode, which would not exist if the core

were not crystallized. Thus, the main effect of introducing a solid core is, in

our view, to add an extra mode with a period below that of the previous k = 1

mode. To support this view we compare their k = 1 periods in the fluid case

with their k = 2 periods in the solid case. For ` = 1, 2, and 3, we find that

their periods now increase from 193.8 to 193.9 sec, from 111.9 to 112.0 sec, and

from 79.1 to 79.2 sec, respectively. While these increases are small, they are

consistent with what one might expect from a Teff ∼ 10,000 K Fe core white

dwarf model which is strongly degenerate in its interior. In addition, the periods

in the uncrystallized and the crystallized state are close enough to strengthen
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our conviction that this is actually the “correct” mode identification.

Using our “global” code, we are numerically unable to treat models

which are more than 97% crystallized. For 97% crystallized models, we do

find evidence for low-period “interfacial” modes which do not exist in the un-

crystallized case; interfacial modes such as these were found in neutron star

models by McDermott, Van Horn, & Hansen (1988). These modes could be

the new modes found by Hansen & Van Horn (1979). We caution, however,

that we do not understand the properties of these modes, i.e., how they change

period as the degree of crystallization changes and whether or not the standard

definition of radial overtone number is meaningful. We are therefore unable to

extrapolate these results to the case of 99.9% crystallization which Hansen &

Van Horn treated.

6. 〈∆P 〉 as a Function of the Model Parameters

In uncrystallized models, the period spacing is a function of many things, in-

cluding the total stellar mass, the effective temperature, and the hydrogen

layer mass. This is still true in the crystallized case, and we examine the ef-

fects which each has on 〈∆P 〉. The fiducial model against which we compare

our calculations is a model with M? = 1.1M¯, Teff = 11, 800, MH/M? = 10−5,

and MHe/M? = 10−3. Unless otherwise stated, all periods are calculated using

the modified Ledoux prescription for the Brunt-Väisälä frequency.

6.1. The Hydrogen Layer Mass, MH

For 0.6 M¯ models, nuclear burning considerations force MH/M? to be smaller

than a few times 10−4 (Iben & Tutukov 1984; Iben & Macdonald 1985). For
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models near 1.1 M¯, this translates into MH/M? ≤ 10−5 due to the higher

gravities and pressures. We therefore examine models with MH/M? between

10−10 and 10−5.

In Figure 3.17, we plot 〈∆P 〉 versus logMH/M? for different degrees of

crystallization, as shown in the legend. For this model, we have used a C/O

core and set MHe/M? = 10−3 and Teff = 11, 800 K, and we have calculated

the Brunt-Väisälä frequency using the Schwarzschild criterion, so that we may

minimize mode trapping effects as much as possible. We see that the effect

of increasing crystallization is to increase 〈∆P 〉 at all compositions. Similarly,

the effect of decreasing logMH/M? is also to increase 〈∆P 〉, for all degrees of

crystallization. Thus, a change in one can mimic a change in the other. Figure

3.18 shows the more physical case where we have used the Ledoux prescription

for calculating the Brunt-Väisälä frequency in this model. The same trends are

still evident, but the period spacing itself has decreased by 3–4 sec for all the

models. This difference is due to the contribution of the composition transition

zones.

The horizontal dashed lines in Figures 3.17 and 3.18 represent the possi-

ble range of the asymptotic period spacing for BPM 37093. This range is based

on the observed value for 〈∆P 〉 of ∼ 17.3 sec from a preliminary analysis of the

WET data, where we have assumed “errors” of ±5% in translating this to an

asymptotic period spacing, as suggested by the deviations from the asymptotic

line in Figure 3.15. For this analysis, we have assumed the observed modes are

all ` = 2 modes, since 〈∆P 〉 ∼ 17 sec is too short to be produced by consecutive

` = 1 modes in models with M? ∼ 1.1M¯. In addition, we assumed the modes

were all m = 0 since only in this way would we have enough information to
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Fig. 3.17.— 〈∆P 〉 as a function of logMH/M? for differing degrees of crystal-

lization with N 2 calculated according to the Schwarzschild criterion.
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Fig. 3.18.— The same as Figure 3.17, except with N 2 calculated with the

Ledoux prescription.
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attempt a fit.

From Figure 3.18, we find the following constraints on our parame-

ter space: −7 ≤ logMH/M? ≤ −5 and 0.00 ≤ Mxtal/M? ≤ 0.70. This is a

fairly large range for each parameter, but they are now no longer indepen-

dent. If we know one of them, then that can reduce the allowed range for

the other. For instance, if the model is 50% crystallized, then we must have

−6 < logMH/M? < −5. From Figure 3.17, we see that there is no choice of

parameters for which the period spacing matches the data. This is not only

evidence that the Schwarzschild criterion is not an appropriate description, but

that the composition transition zones do have a significant effect on the average

period spacing.

6.2. The Total Stellar Mass, M?

We now consider models which differ only in mass from our fiducial model; all

the other parameters are held fixed. In Figure 3.19 we plot the average period

spacing for a set of M? = 1.15 M¯ models as a function of MH, where we

continue to use the more physical Ledoux prescription for the the Brunt-Väisälä

frequency. Since the more massive models are smaller in radius, they have a

higher average density, and therefore smaller periods and period spacings. For

the less massive, 1.05 M¯ models in Figure 3.20, we find the opposite is the case;

these models are larger in radius and therefore have larger period spacings.

6.3. The Effective Temperature, Teff

In Figure 3.21 we show how the mean period spacing for ` = 2 modes varies as

a function of the effective temperature for our fiducial models. The horizontal
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Fig. 3.19.— The same as Figure 3.18, except for 1.15 M¯ models.



91

Fig. 3.20.— The same as Figure 3.18, except for 1.05 M¯ models.
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dotted lines again span the range of the period spacing as determined from

the data for BPM 37093. We see that as the models cool, the period spacing

increases. This occurs because the models become more degenerate as they

cool; in a completely degenerate configuration, the Brunt-Väisälä frequency is

identically zero, except in a composition transition zone.

6.4. Scaling Relations

The results of the previous sections may be used to obtain simple (and simplis-

tic) scaling relations for 〈∆P 〉. If we look at small variations of these parameters

about our fiducial model with 50% crystallization, then we find the following:

〈∆P 〉 ∝ X0.52M−2.1
? T−0.69eff , (3.36)

where X ≡ − logMH/M?. In order to see the effect of observational uncertain-

ties in these quantities, we recast equation 3.36 in differential form:

δ〈∆P 〉
〈∆P 〉 ∝ 0.52

δX

X
− 2.1

δM?
M?
− 0.69

δTeff
Teff

. (3.37)

From fits of spectra of BPM 37093, Bergeron et al. (1995) find approximately

Teff = 11, 740± 200 K, and M? = 1.09± 0.05M¯. From this we see that errors

in the mass determination produce over 8 times the effect of errors in the

temperature determination. Thus, M? is the most important input parameter

which the observations can provide. The quantity X, the log of the hydrogen

layer mass, is not an observable quantity in the standard sense. It can only

be determined from an asterseismological analysis of a particular star, which

leads us to the topic of the next section.
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Fig. 3.21.— The average period spacing as a function of Teff for different degrees

of crystallization, as shown in the legend. The models all have M? = 1.1M¯,

MHe/M? = 10−3, and MH/M? = 10−5.
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7. Mode Trapping

7.1. Physical Description

If we examine Figure 3.10 or Figure 3.11, we see that the composition tran-

sition zones contribute a disproportionate weight to the frequency. In fact,

eliminating the effect of these zones by using the Schwarzschild criterion for

the Brunt-Väisälä frequency results in periods and period spacings which are

larger by 14% and 23% for Figures 3.10 and 3.11, respectively. We saw that

this had the effect of making the period spacings of the 1.1 M¯ model too large

to agree with the preliminary value of 〈∆P 〉 determined for BPM 37093. Apart

from affecting just the mean period spacing, these transition zones introduce

irregularities into individual period spacings, an effect which has come to be

known as “mode trapping.”

Figure 3.10 gives the weighted region of frequency formation in the

asymptotic limit, i.e., short radial wavelength and large radial overtone k. This

means essentially that the radial oscillations of the eigenfunction are rapid

enough that a given mode samples all the “nooks and crannies” of dσ/dx. The

modes of interest to us, however, are not yet in this high k limit, so they do not

evenly sample dσ/dx. In general, a mode will have a non-negligible amplitude

in these transition regions and will therefore sample these high weight regions.

Some modes, however, will happen to have nodes in their eigenfunctions in

the transition zones and will sample these regions much less. As a result,

their integrated frequencies will be less than expected and their periods will

be longer. This means that their periods will be closer to that of the next

highest k, with the result that ∆Pk ≡ Pk+1−Pk will be decreased. In addition,
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as the modes move into the high k limit, they begin to sample the transition

zone more equally, which will will minimize the effect of mode trapping from

the above mechanism. These results agree with the previous investigation by

Brassard et al. (1992).

The above description does not explicitly take into account the enhance-

ment of a mode’s eigenfunction in either the core or the envelop due to a compo-

sition transition zone, in other words, actual mode trapping. As such it should

more properly be called something like “transition zone weighting.” If we treat

dσ/dx as a potential, however, then a wave which tries to propagate through

a transition zone sees the spike in dσ/dx as a sudden change in the potential,

and is partially reflected. Thus, modes can have an enhanced amplitude on

one side of a transition zone relative to the other, depending on their degree of

reflection from the interface.

Finally, we give a more physical argument for “transition zone weight-

ing.” In a transition zone, vertically displaced material feels a greater return

force since it is intrinsically heavier than surrounding material if displaced up-

wards and lighter if displaced downwards. This is reflected in the enhanced

Brunt-Väisälä frequency in a transition zone. Modes which sample this region

will therefore tend to have higher frequencies (lower periods) than those which

do not. Some modes will manage to avoid these transition zones by having

periods which allow them to have nodes in or near these transition zones, so

they will have lower frequencies and higher periods. These modes will be what

we call trapped modes.
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7.2. Phenomenology

The traditional way to obtain information about the surface layer thicknesses

is to use mode trapping information for individual modes, i.e., calculate ∆Pk ≡

Pk+1 − Pk directly from the data set and match this to numerical calculations.

There is no reason why this will not work now, as long as we have enough

well-identified consecutive overtones.

The physics of mode trapping should be unaffected by the presence of

crystallization, with the exception that crystallization determines which periods

can be normal modes. By this we mean that the set of periods which can be

trapped in the outer envelope by a resonance with the hydrogen transition zone

are determined by the structural parameters of the envelope, not the core. On

the other hand, the degree of crystallization in the core determines the set of

periods which are allowed to exist as normal modes. When periods in these

two sets overlap, we find a trapped mode.

In general, a transition zone may trap a mode in the region above it

or below it. For a mode to be trapped in the outer hydrogen layer, it needs

to have a resonance with the He/H transition region such that its vertical and

horizontal displacements both have a node near this interface (Brassard et al.

1992). If we imagine integrating this mode inward from the surface using the

boundary conditions there, then we see that all this condition depends on is

the mode frequency. Whether or not a frequency which would be trapped is

indeed an allowable normal mode frequency does depend on the amount of

crystallization in the core. From this, we see that it should be possible to

disentangle the effects of crystallization and mode trapping.
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More precisely, Brassard et al. (1992) find that the average period

difference 〈∆P 〉t between successively trapped modes is

〈∆P 〉t =
2π2

√

`(`+ 1)

[∫ r2

rH
Ndr/r

]−1

, (3.38)

where rH is defined as the radius at the base of the hydrogen layer; the integral

is therefore over the hydrogen surface layer only. We see that this does not

depend on any of the properties of crystallized region, but only on those of

the hydrogen envelope. They also find that the interval between successive

overtones ∆k is given by the ratio of this period to the average period spacing

(equation 3.31):

∆k =

∫ r2
r1 Ndr/r
∫ r2
rH Ndr/r

. (3.39)

We find that ∆k is a function of the crystallized mass fraction, since the inner

turning point r1 moves outward as we crystallize our model.

In Figure 3.22, we show how mode trapping changes with different

amounts of crystallization for a given model. Note that there is always a mode

near 575 sec which is somewhat trapped. The mode near 630 sec also tends to

be trapped. Essentially, the effect of crystallization is to shift the periods in a

given model, and when some of these periods happen to “line up” with periods

which can be trapped, we find a trapped mode. Thus, the set of periods which

tend to be trapped are the same, regardless of the degree of crystallization.

Unfortunately, the trapping due to different transition zones makes it difficult

to define a trapping cycle. Furthermore, the structure of the mode trapping

changes significantly as the degree of crystallization is changed by only 10%.

This suggests that we will need to examine the degree of crystallization in

smaller increments.
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Fig. 3.22.— Forward period difference for ` = 2 modes. Each panel is labelled

by the degree of crystallization assumed for the model. All the other model

parameters are held constant.
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Figure 3.23 is a more detailed version of Figure 3.22 which shows how

∆P changes as the crystallized mass fraction is increased from 0.50 to 0.59 in

increments of 0.01. First, we note that the mode trapping features for periods

less than 520 sec remain unchanged as a function of crystallized mass fraction.

The most significant feature, however, is a severe mode trapping feature which

moves to higher periods as the degree of crystallization is increased; it is evident

in the first four panels which have Mxtal/M? in the range 0.50–0.54.

The open circles in Figure 3.23 represent the mode trapping inferred

from data collected during the Spring 1998 WET run on BPM 37093. They

show a strong trapping feature at 600 sec. If we imagine the different panels

as an attempt at a fit to this data, then we see that this trapping feature will

be best reproduced by models which are between 52% and 53% crystallized.

At the present, we cannot examine the degree of crystallization in increments

smaller than 0.01, although it is a straightforward modification to allow this;

we will include this functionality in the near future. We note that this extreme

sensitivity of some of the periods to the crystallized mass fraction may in prin-

ciple allow us to derive very accurate values for the crystallized mass fraction,

if we are able to zero in on a unique solution.

As we would imagine in a many-parameter problem such as this, there

are many local minima which compete for the title of best solution. One such

competitor is shown in Figure 3.24. The model is the same as that in Figure

3.23, except we have searched a different range of crystallization. Here, the

observed trapping feature at 600 sec is best reproduced by a model which is

between 82% and 83% crystallized. Again, we see that the trapping feature in

the model is very sensitive to the crystallized mass fraction.
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Fig. 3.23.— The filled circles connected by lines show the period spacing in the

model versus the period, for degrees of crystallization varying between 50% and

59%. The open circles are from the observed period spacings in BPM 37093

from the WET run in Spring 1998, assuming that the observed modes can be

identified as ` = 2,m = 0 modes.
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Fig. 3.24.— The same as Figure 3.23, except for values of the crystallized mass

fraction between 80% and 89%.
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8. Objective Fitting Procedures

We need an automated procedure for searching parameter space, both to obtain

more precise fits and to address the issue of uniqueness of fit. The sensitivity

of the trapping features to the crystallized mass fraction is both a blessing and

a bane: It is a blessing because this should allow us in principle to determine

precise values for Mxtal/M?, and it is a bane because in practice it requires

the computation of an enormous number of models on a fine grid in order to

sample the parameter space adequately.

We are currently exploring different methods which would address these

issues. In one sense, the easy part of this problem is choosing a method such as

“simulated annealing” or a “genetic algorithm” which can find global minima

of multidimensional functions. The hard part is automatically generating the

equilibrium models with a given set of fit parameters, so that these models

can be examined pulsationally. Traditionally, the evolution of such models has

been a “hands on” procedure, and this is true of our evolutionary models as

well.

It may be possible to make use of these sophisticated fitting techniques

by employing a hybrid approach. Instead of generating new evolutionary mod-

els for each new set of parameters, we can parameterize the Brunt-Väisälä

frequency and vary it within a single evolutionary model. Although this is not

a completely self-consistent approach, it is a very good approximation since the

Brunt-Väisälä frequency depends sensitively on derivatives of the equilibrium

model, and small differences in the density, temperature, and composition of the

model can therefore produce large differences in the Brunt-Väisälä frequency.
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The other structural parameters will be affected comparatively little by such

changes, so they may be thought of as essentially constant. Since g-modes are

mainly sensitive to the Brunt-Väisälä frequency (the asymptotic expression for

g-mode periods involves only N 2 and r), we will be able to simulate changes in

surface layer thickness (by moving the bumps in the Brunt-Väisälä frequency

in and out) as well as in temperature (by increasing and decreasing the Brunt-

Väisälä frequency locally). The only parameter not easily included in this

scheme is the total stellar mass, M?, since as we change M? we would expect

changes in the pressure and density profiles. However, it should be possible to

introduce scaling relations which would be accurate for ∼ 10% changes in M?;

this should be more than adequate since spectroscopic mass determinations

typically result in errors which are smaller than this.

Unfortunately, this problem lies outside the scope of this thesis, although

it may lie within the scope of future PhD theses at the University of Texas.

The genetic algorithm in particular offers promise as a useful fitting technique

(Metcalfe 1998), not only for its ability to converge to global minima, but

because it can find a heterogenous “population” of solutions whose similarities

tell us what we reliably know from the fit and whose differences tell us what

we in principle cannot learn from a given data set. This will finally allow us to

assess the uniqueness of our asteroseismological fits.





Chapter 4

Asteroseismological Signatures of Phase

Separation

In this chapter we ask whether we can use asteroseismology to address the

phenomenon of phase separation. There are two related ways phase separation

should affect the pulsations. First, if we assume the theory of crystallization is

correct and complete, then for a given initial C/O profile at a given tempera-

ture, a phase-separating model will have a different crystallized mass fraction

than one in which no chemical rearrangement occurs; in the previous chapter

we saw the consequences which this can have. Second, phase separation pro-

duces changes in the composition profile in the solid and fluid regions. Put

another way, if we have two models started with the same initial C/O profile

and which have crystallized to the same point, then the one which is undergoing

phase separation will have a different C/O profile in the fluid region, and since

the pulsations sample the fluid region, we could in principle tell the difference

between these two cases.

We must first answer the fundamental question: Does the shape of the

C/O profile significantly affect the pulsations of our white dwarf models, even

in the fluid limit? If we are not sensitive to the C/O profiles in the cores of our

models in the ordinary fluid cases, then we will almost certainly be unable to
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say anything about the profiles in our crystallizing, phase-separating models.

Thus, we need to address the problem of arbitrary C/O profiles in the context

of our “normal” 0.6 M¯, uncrystallized white dwarf models, as well as in the

more massive 1.1 M¯ models.

First, however, we examine the effect which the process of crystallization

has on the rates of period change in our models, in order to see what are the

observable consequences.

1. The Question of Ṗ

As a white dwarf evolves, the properties of the resonant cavity in which the

g-modes propagate changes. The periods therefore should evolve with time. If

we formally assume the period to be a function of the effective temperature

Teff , the radius R?, and the crystallized mass fraction ,mx ≡Mxtal/M?, i.e.,

P ≡ P (Teff , R?,mx),

then we may write the time rate of change of the period Ṗ ≡ dP/dt as

Ṗ =
dTeff
dt

dP

dTeff

∣

∣

∣

∣

∣

R?,mx

+
dR?

dt

dP

dR?

∣

∣

∣

∣

∣

Teff ,mx

+
dmx

dt

dP

dmx

∣

∣

∣

∣

∣

R?,Teff

(4.1)

Since we are examining the role of crystallization in the pulsations, we are

interested only in the third term on the RHS of equation 4.1.

The problem now consists of two parts. The first involves calculating

the rate of period change as the crystallized mass fraction is varied, which we

saw how to do in the previous chapter. The second involves calculating the time

rate of change of the crystallized mass fraction, dmx/dt. Assuming that the
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standard treatments of crystallization accurately reflect the physics in white

dwarf interiors, we can easily calculate dmx/dt from our evolutionary models.

In Figure 3.16, we saw how an eigenspectrum of mode periods evolved

as mx was varied from 0.0 to ∼ 1.0. Many of the periods appeared to change

“rapidly” as the model crystallized. We might therefore expect that these

periods would have a significantly enhanced Ṗ . Computing dP/dmx for the

modes in this figure yields the somewhat chaotic looking Figure 4.1. Here, at

each crystallized mass fraction, we have plotted dP/dmx for all the ` = 2 modes

in the model with periods between 50 and 1000 sec. Since many of the modes

have similar derivatives, the points corresponding to the different modes often

lie nearly on top of each other. The utility of this plot is that it shows that the

maximum values of dP/dmx are in the range ∼ 1000–2000 sec. We note that

the C/O profile assumed for this calculation is given by

Xox =















0.80 0.00 ≤ q ≤ 0.75

0.80− 16
3
(q − 0.75) 0.75 < q ≤ 0.90

0.0 0.90 < q ≤ 1.00

(4.2)

where q = Mr/M? and Xox is the oxygen mass fraction.

If we restrict ourselves to periods between 500 and 700 sec, however,

we find less scatter in the dP/dmx relationship, and hence smaller maximum

values. This is shown in Figure 4.2. We now see that the largest period changes

are in the 500–1000 sec range, although when mx is near 0.40 and 0.65, the

value is less than 100 sec.

Clearly, the other half of this problem is calculating the magnitude of

ṁx = Ṁxtal/M?. In Figure 4.3, we show how the magnitude of ṁx (in sec−1)

changes as a 1.1 M¯ model cools. In the vicinity of the ZZ Ceti instability strip
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Fig. 4.1.— dP/dmx as a function of mx = Mxtal/M? for the periods shown in

Figure 3.16.
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Fig. 4.2.— The same as Figure 4.1, except we have only plotted dP/dmx for

the periods between 500 and 700 sec. Note that near 0.40 and 0.65 the periods

are quite insensitive to the crystallized mass fraction.
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(Teff ∼ 12, 000 K), we see that ṁx ∼ 4.5 · 10−18 sec−1. For this temperature

range and C/O profile, we have mx ∼ 0.8, for which the larger derivatives in

Figure 4.1 are ∼ 1500 sec. Using these values, the third term in equation 4.1

gives a value of Ṗ ≈ 7 · 10−15 s/s. Thus, a few of the modes will have period

changes this large. Modes between 500 and 700 sec will have somewhat smaller

maximum values, with Ṗ ≈ 5 · 10−15 s/s.

The most sensitive measurements yet made for a Ṗ in a pulsating white

dwarf are those for the star G117-B15A. Kepler, Nather, & Metcalfe (1998)

find a value of

Ṗ = (1.2± 2.2) · 10−15s/s,

where they have used data from 1975 through 1997 to determine the stability

of the mode. We estimate that a 10 year baseline of observations would be

necessary to see the somewhat larger Ṗ ∼ 6 · 10−15 s/s which we would predict

for the crystallizing pulsator BPM 37093. While this sounds like a very difficult

task, 5 years of observational data already exist for this star.

2. The Effect of a Non-uniform C/O Profile

In this section we explore the effect which a non-uniform C/O profile has on the

pulsations, both in the context of our “normal” 0.6 M¯ white dwarf models,

as well as for the higher mass 1.1 M¯ models which are more appropriate for

crystallizing ZZ Ceti’s.

The profiles which we choose for this examination are extreme cases.

The first profile is a “flat” or constant 50:50 C/O ratio throughout the cores of

our white dwarf models. The other profile is taken to be pure O in the center,
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Fig. 4.3.— dmx/dt as a function of Teff for a 1.1 M¯ model with the C/O

profile specified in equation 4.2.
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decreasing linearly with mass to pure C at the 0.99 mass point. For all models,

we fix Teff = 11,800 K.

2.1. The 0.6 M¯ Models

We first start with models which should remain fluid until they are well past

the ZZ Ceti instability strip, the 0.6 M¯ models. In Figure 4.4, we compare the

period weight function for the two extreme profiles; the surface layer masses are

given by MHe/M? = 10−2 and MH/M? = 10−4. The two curves disagree only

in the region where they have different C/O profiles, i.e., log(1−Mr/M?) < 1.

The dotted curve is the linearly decreasing oxygen profile. It is higher in the

core because the changing composition enhances the Brunt-Väisälä frequency

through the modified Ledoux term, which makes the modes more sensitive to

this region. The increased Brunt-Väisälä frequency in the core of the linear

profile results in a period spacing which is 10% shorter than that produced by

the constant C/O profile. As a result, the mode periods themselves should be

modified at the 10% level. Since such an enhanced Brunt-Väisälä frequency

shortens the periods but does not introduce strong mode trapping, this could

mimic the effect of changing the total stellar mass, M?.

2.2. The 1.1 M¯ Models

We now examine models which should be crystallized in the ZZ Ceti instability

strip, using the same two C/O profiles. In figure 4.5, we plot the period weight

function in the case of two 1.1 M¯ models, each with MHe/M? = 10−3, and

MH/M? = 10−5. We have computed the weight function as if the entire model

were fluid; in general, some fraction of it will probably be crystallized and
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Fig. 4.4.— The period (frequency) weight function for 0.6 M¯ models with

two “extreme” profiles. The dotted line is the model with a linearly decreasing

oxygen mass fraction, and the solid line is for the 50:50 uniform C/O mixture.
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therefore have zero weight in determining the period.

Clearly, the non-uniform C/O profile makes a huge difference in this

case. The period spacing of the linear profile is just 73% that of the flat profile.

This is not that much smaller an effect than going from ` = 1 modes to ` = 2

modes! Of course, if we include crystallization in the standard way, then much

of this inner region will be excluded; for the present case, the model with the

linear profile should be 70% crystallized. If we assume that both models are

70% crystallized, then the difference in period spacing becomes only 5%.

These experiments show that the C/O profile can make a large difference

in the period spectra of our white dwarf models. At higher mass, this effect is

even larger, except that in a self-consistent analysis the models would tend to

be significantly crystallized, which would reduce the effect. This suggests that

slightly less massive models might show this effect to the greatest degree, since

they would be less crystallized but still fairly massive, with M? ∼ 1.0M¯.

3. “Self-consistent” C/O Profiles

Here I have used the term “self-consistent” for lack of a better term. When

this term is used, it generally means that one aspect of the problem is self-

consistent, but not necessarily any others. In the present case, I merely mean

that since the C/O profiles in actual stars are believed to be the result of

an epoch of nuclear burning, we have used the results of such calculations

(provided by Salaris et al. 1997) for our C/O profiles. While these calculations

are probably not the last word on the subject, they do represent the current

“state-of-the-art”. For our purposes, the important feature of the profiles is
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Fig. 4.5.— The period (frequency) weight function for 1.1 M¯ models with

two “extreme” profiles. For the purposes of this plot, we are assuming that the

entire model is fluid. The dotted line is for the linear oxygen profile and the

solid line is for the flat profile.
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that they are not flat or piecewise linear as are the previous profiles we have

examined. In fact, flat or piecewise linear profiles are what is normally assumed

in most asteroseismological treatments (e.g., Bradley, Winget, & Wood 1993;

Bradley 1993; Bradley & Winget 1994a, 1994b; Bradley 1996).

In Figure 4.6, we show the two different profiles. The solid line corre-

sponds to the initial profile and also the final profile in the case of no phase

separation, and the dashed line is the final profile in the case that the model

has crystallized outward to the 69% mass point. For the pulsational analysis,

we will therefore be assuming that each of our models is 69% crystallized. Note

that the flat portion of the dashed curve in Figure 4.6 in region 0.70–0.99 is a

result of the fluid mixing which has occurred as a result of phase-separation;

these layers have been mixed and homogenized so that they have the same

composition. Both profiles still retain a sharp drop in the oxygen abundance

at the ∼ 0.99 mass point.

In Figure 4.7, we plot the period weight function for the two C/O pro-

files in Figure 4.6. The weight functions are plotted as if both models were

completely fluid so that the g-modes would be able to sample the deep core.

The vertical dashed line indicates the lower limit to g-mode propagation if the

models are considered to be 69% crystallized.

Several features present themselves in this plot. First, since these two

models differ only in the C/O composition in the core (the mass, temperature,

and layer masses are the same), we see that the weight function is identical

in the region − log(1 −Mr/M?) > 2. Second, the weight function in the core

inside the 69% mass point is very different in the two cases. In fact, there is

a 10% difference in the asymptotic period spacing of these models due to this
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Fig. 4.6.— The difference in profiles due to phase separation for ∼ 1 M¯

models, as computed by Salaris et al. (1997). The solid line is the initial

profile and the dashed line is the profile after crystallization has proceeded to

the 69% mass point.
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Fig. 4.7.— The period (frequency) weight function for the two different C/O

profiles shown in Figure 4.6. The solid line and dotted lines correspond to the

cases with and without phase separation, respectively. The vertical dashed line

shows the location of the 69% mass point.
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region. This shows us that the C/O profile can have a major effect on the

pulsations, as we have already seen. In the case considered here, however, this

region is off limits since we consider it to be crystallized. Integrating in the fluid

region only, we find that there is only a 0.2% change in the asymptotic period

spacing between the two cases. In this case, crystallization completely masks

any potential changes in the Brunt-Väisälä frequency due to phase separation.

Although crystallization has removed the sensitivity of our models to the

composition profiles in the core, it has simultaneously removed the uncertainties

of our period determinations which are based upon those unknown profiles. For

uncrystallized models, we have shown that differing C/O profiles can still have

a substantial effect on the calculated periods.





Chapter 5

Conclusion

We have seen in the previous chapters that the physics of crystallization mani-

fests itself in many different ways in white dwarf stars. In the context of white

dwarf cooling, the release of latent heat and the phase separation of carbon

and oxygen during crystallization can provide additional sources of energy for

the white dwarf stars, allowing them to cool more slowly. Since we use white

dwarfs as chronometers for the age of the local Galactic disk (“white dwarf

cosmochronometry”), we need to know the magnitude of this effect with re-

spect to our calculated white dwarf ages. From our investigations, we find this

increment to our model white dwarf ages to be no more than 1.5 Gyr, with a

most likely value of less than 1 Gyr.

Although the physics of crystallization in white dwarf interiors rests on

a sound theoretical foundation, neither it nor the theory of phase separation

have been tested experimentally in conditions simulating white dwarf interiors.

To this end, we have explored the consequences which a crystallized core has on

the oscillations of our white dwarf models, in the hopes of diagnosing whether

crystallization and phase separation occur in actual white dwarf stars. For

the star BPM 37093, we have used our results along with a tentative mode

identification for the periods in the WET data to obtain a relationship between
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the thickness of its surface hydrogen layer and its degree of crystallization.

1. Discussion of Results

In Chapter 2, we showed that the standard approach to phase separation (e.g.,

Isern et al. 1997; Salaris et al. 1997) is valid, and we verified it directly in

the case of a zero-temperature model supported only by electron degeneracy

pressure (Chandrasekhar 1939). We then demonstrated that phase separation,

if it occurs, probably introduces about a ∼ 0.6 Gyr increment to the ages which

we calculate for the oldest white dwarfs. The maximum value which we were

able to produce for this effect was ∼ 1.5 Gyr, in which we assumed an artificial

profile with a 50:50 C/O ratio throughout the cores of our models; more realistic

profiles based on nuclear reaction rates produce cores which are 70–80% oxygen,

so that phase separation produces less of an effect. We therefore believe that

the ages of the local Galactic disk derived from white dwarf cosmochronometry

change by less than one Gyr, depending on whether or not phase separation

occurs.

In Chapter 3, we reviewed the basics of nonradial pulsation theory of

normal fluid stars. In addition, we derived a dispersion relation for the torsional

modes and determined the region of propagation of these modes in models with

a crystalline core. However, these modes cannot propagate through the fluid

layers, so they should not be detectable at the photosphere; their coupling to

other modes should also be quite small, since their angular eigenfunctions are

orthogonal to the ordinary spherical harmonics of p- and g-modes. We also

showed that the p-mode periods are only affected at the level of a few percent.
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For the g-modes, we found that they are effectively excluded from the

crystalline cores of our models, so that their region of propagation is limited to

the fluid layers only. Using a “hard sphere” boundary condition, we found we

could reproduce the periods calculated using the self-consistent global approach

to better than 1 part in 104. The main effect of a crystallized core in our models

is to widen the average period spacing between consecutive radial overtones;

the period spacing can be increased by over 30% for crystallized mass fractions

greater than 90% in our models.

In previous asteroseismological analyses of the objects GD 358 and PG

1159, we have used the information contained in the variations from the mean

period spacings between consecutive radial overtone modes. These variations

are produced when a mode has a resonance with the surface hydrogen or helium

layer, for example. We then say that it is “trapped” in the layer, but more

accurately it simply has an enhanced amplitude in that layer. Clearly, a trapped

mode does not sample a model in the same way that an untrapped mode does,

and it is this which produces the variations in period spacing. Typically, we

use this mode trapping information to determine the masses of the surface

hydrogen and helium layers. Since the physics in these layers is unaffected by

any crystallization which may be occurring in the cores of our models, we expect

to be able to use mode trapping information in the case of our crystallized

pulsating models.

As a preliminary example, we attempted to interpret the periods seen

in a recent WET run on BPM 37093, a 1.1 M¯ DAV which should be in

the process of crystallizing. For the purpose of this analysis, we assumed the

modes were all consecutive radial overtones with ` = 2, m = 0, although we
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do not have firm mode identifications; in the future, we will use the technique

described in Robinson et al. (1995) to determine the ` values for these modes.

We obtained a relation between the hydrogen layer mass and the crystallized

mass fraction. For instance, a best-fitting model which is 50% crystallized must

have a hydrogen layer mass satisfying −6 ≤ logMH/M? ≤ −5.

In Chapter 4, we considered the pulsational consequences which phase

separation might have, with an eye as to how this might be measurable in an

asteroseismological sense. In the process of this, we found that gradients in the

C/O profiles in the cores of our white dwarf models could have quite significant

effects on the periods of g-modes. The C/O profiles computed by Salaris et al.

(1997, the solid line in Figure 4.6) were relatively flat throughout most of the

core, however, so this effect was greatly minimized; if these profiles accurately

represent the true profiles in these stars, we probably cannot tell pulsationally

whether or not phase separation has actually occurred in a given star. We

should keep in mind that the C/O profiles in actual white dwarfs may not be

as constant, and that this effect could play a much larger role.

2. The Future

The field of white dwarfs is ripe for progress. This is due partly to the increas-

ing number of large (∼ 8 meter) telescopes and partly due to technological

improvements such as adaptive optics, which can give smaller telescopes the

same signal to noise as larger ones. This will allow us to make much more

detailed observations of white dwarfs than ever before. As an example of this,

Van Kerkwijk et al. (1997) used the Keck telescope to obtain time-resolved
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spectroscopy of the DAV white dwarf G29–38. Due to the high data qual-

ity, they were able to measure the difference in phase between the luminosity

perturbations and the velocity perturbations at the surface of this star, which

may be a key to unlocking the physics which is occurring at the base of its

convection zone.

In addition to using large telescopes, surveys using specialized medium

and small-sized telescopes promise to dramatically increase the number of

known white dwarfs. For instance, the Texas Deep Sky Survey (TDSS) is

a survey designed to find white dwarfs over a 100 square degree area of the sky

(Claver 1995); when completed, this survey will more than double the number

of cool white dwarfs in the last luminosity bin at the turndown of the WDLF in

Liebert, Dahn, & Monet (1988), and add hundreds of faint white dwarfs with

logL/L¯ < −3. The Sloan Digital Sky Survey is a project which will map

10,000 square degrees of the sky. If we assume the same sensitivity for this

survey as for the TDSS (which is an underestimate), then this survey has the

potential to discover tens of thousands of faint white dwarfs. This will greatly

reduce the observational errors on the observed WDLF to the point where we

can obtain information about star formation rates, as well as about the detailed

physics of white dwarf interiors and envelopes.

Given this outlook, it is reasonable to imagine that we will find other

stars like BPM 37093, which are high-mass pulsators that are presumably crys-

tallized. Since it is possible to make greater progress when a class of objects

exists rather than when there is just a single isolated example, we will have

more tools at our disposal when we attempt an analysis of these stars. For ex-

ample, the DAV white dwarfs individually pulsate in several frequencies, but no
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one of them (at least at one point in time) has enough periods that we can make

an asteroseismological fit. Considering the class as a whole, however, Clemens

(1993) showed the total set of periods which they exhibit is consistent with

a nearly identical population of white dwarfs, all of which had M? ≈ 0.6M¯,

MHe/M? ≈ 10−2, and MH/M? ≈ 10−4.

A difficulty in all asteroseismological analyses is mode identification.

The technique applied by Robinson et al. (1995) can determine the ` value

of a mode, but not the m value. In addition, this technique assumes that a

given mode in the pulsating star is oscillating with the spatial structure of a

pure spherical harmonic at its surface; if this is not the case, the technique

may return ambiguous results. At present, the most reliable technique for

identifying the m value of a given mode is to observe it as one of the 2` + 1

components of a rotationally split multiplet, all of which are observed to be

present in the power spectrum.

If we are ever able to model reliably the amplitudes of the nonlinear

sum and difference frequencies, we will be able to tell what the m values and

what the ` values are. This is because any general nonlinear effect, whether

it is a mode coupling or a surface nonlinearity effect, will produce nonlinear

frequencies which have a different angular structure than the parent frequencies.

The payoff will be a unique fit for the physical amplitudes in the star and their

` and m values. Brassard, Fontaine, & Wesemael (1995) attack this problem

by treating the nonlinear response of the local flux at the stellar surface to the

temperature perturbations, i.e., L ∝ T 4; they have successfully applied this

method to some of the ZZ Ceti’s. In order for a program such as this to be

successful, however, we must correctly identify the most important nonlinear
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processes which are present in white dwarf pulsations.

A persistent bane of stellar evolution theory has always been the treat-

ment of convection. An even more complicated problem is that of the inter-

action of pulsations and convection; in most pulsating stars, this problem is

prohibitively complicated. For white dwarf stars, however, the situation is more

promising. This is because the convective turnover timescale for the rising and

sinking fluid parcels is less than 1 sec in models of DAV white dwarfs. Thus

convection, while still a nuisance, at least responds nearly instantaneously to

the pulsations. We are therefore able to treat the convection zone as contin-

uously reacting to the “slow” pulsations which are of order 100’s of seconds.

This problem has recently been treated by Wu (1997). Her work revisits the

problem of the role of convection in the pulsations of the ZZ Ceti’s, and com-

plements and confirms the earlier pioneering work of Brickhill (e.g., Brickhill

1991a, b).

This approach to convection offers us the hope that by understanding

the pulsation-convection interactions we may be able to distinguish between

different theories of convection. While the analyses of Wu and Brickhill have

been based on the mixing length theory of convection, more physical treatments

of convection, such as by Canuto, Goldman, & Mazzitelli (1996) and Canuto

& Dubovikov (1998), could in principle also be used. Thus, white dwarf stars

could provide the critical laboratory for deciding among these theories. This

would be of importance to the entire field of stellar evolution.
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3. Summing Up

The results presented in this thesis address the fundamental process of crystal-

lization in white dwarf stars. Whether or not it occurs has major ramifications

on the theory of white dwarf cooling and hence on Galactic ages determined

from the WDLF. We calculated the effect which the associated phenomenon of

phase separation could have on white dwarf ages and found it to be of order 1

Gyr or less. We then developed the general theory of white dwarf pulsations in

partially crystallized models in the hope that we will be able to observationally

determine whether crystallization occurs in the way that we think it does.

We see that the field of white dwarf research offers a great deal of promise

for the future; the white dwarf stars have many things to tell us, if only we are

patient enough to listen.
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Appendix A

Spheroidal Oscillation Equations in a

Crystalline Medium

1. The Equations

We take our equations from those given by Hansen & Van Horn (1979). The

oscillation variables are

z1 =
ξr
r
,

z2 =
1

µ0

(

λα+ 2µ
dξr
dr

)

,

z3 =
ξh
r
,

and

z4 =
µ

rµ0

(

dξh
dr
− ξh

r
+
ξr
r

)

,

where ξr and ξh are the radial and horizontal displacements, respectively, as

defined in equation 3.9, r is the radius, λ = Γ1p− 2
3
µ, µ is the shear modulus,

α ≡ 1
r2

d
dr
(r2ξr) − ˆ̀ξh

r
, with ˆ̀ ≡ `(` + 1). These variables are the same as

those in Hansen & Van Horn (1979) except that we have divided z2 and z4

by µ0 ≡ µ(r = 0) so that the equations are dimensionless. The fourth order

system of equations (in the Cowling approximation) is then
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rz′1 = −(1 + 2λδ)z1 + δz2 + λˆ̀z3,

rz′2 = (−σ2ρr2 − 4ρgr + 4πGρ2r2 + 4µβδ)z1 − 4µδz2

+ (ˆ̀ρgr − 2µβδ ˆ̀)z3 + ˆ̀z4,

rz′3 = −z1 + z4/µ,

rz′4 = (gρr − 2µβδ)z1 − λδz2

+
{

−ρσ2r2 + 2µδ
[

λ(2ˆ̀− 1) + 2µ(ˆ̀− 1)
]}

z3 − 3z4,

where the prime denotes d
dr
, δ ≡ (λ+2µ)−1, β = 3λ+2µ, g is the acceleration

due to gravity, and ρ is the density.

2. Central Boundary Conditions

Since the models we are considering are crystallized in the center, we need to

obtain the boundary conditions in the center so that we may begin the outward

integrations. If we assume that the solutions go like rs near the center, we find

four solutions: s = `− 2, `,−(`+ 1),−(`+ 3). Only the first two solutions are

regular at the origin, so they span the space of physical solutions. The general

solution near the center is therefore given by

{zi} = a



















1

2(`− 1)

1/`

2(`− 1)/`



















r`−2 + b





















(`+1)[λ`+µ(`−2)]
2[λ`(`+2)+µ(`2+2`−1]

(`+1)[λ(`2−`−3)+µ(`2−`−2)]
2[λ`(`+2)+µ(`2+2`−1]

λ(`+3)+µ(`+5)
2[λ`(`+2)+µ(`2+2`−1)]

1





















r`,

where a and b are arbitrary coefficients and where µ and λ are taken to have

their central values. These two solutions for the eigenfunction near the center
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are equivalent to the relations given in Crossley (1975), if the Cowling approx-

imation is used.

3. The Solid/Fluid Interface

In practice, we integrate each independent solution outward from the center.

With the exception of z3, the {zi} are continuous at the solid/fluid interface.

Since z4 = 0 in the fluid, we choose the ratio of a and b such that z4 van-

ishes at this interface. This leaves only one overall normalization constant.

Furthermore, y1 = z1 at the boundary. Since z2 is also continuous, we have

z2 = λα/µ0 = λVg(y1 − y2)/µ0,

where we have used the oscillation equations in the fluid to express α in terms

of the Dziembowski variables {yi}. At the fluid/solid interface, if we solve for

the {yi} in the fluid in terms of the {zi} in the solid then we find

y1 = z1,

y2 = z1 −
µ0
λVg

z2,

where Vg = gr/c2s, and λ is now Γ1P since µ is zero in the fluid. Since we

now have specified y1 and y2 (up to an overall normalization constant which is

present in the {zi}), we can now integrate the normal oscillation equations in

the fluid (in the Cowling approximation) out to the photosphere of the model.

The main difficulty in applying this procedure is that a significant

amount of numerical noise can creep into the integrations in the crystalline

core. This is due to the fact that we are taking linear combinations of two nu-

merically determined solutions, in such a way that they cancel to make z4 = 0
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at the solid/fluid boundary. The farther out from the center we integrate the

more the errors accumulate. The result is that we cannot obtain meaningful

solutions if our 1.1 M¯ models are greater than about 98% crystallized. For-

tunately, for the core compositions considered here (carbon/oxygen), we do

not expect the core to be more than 90% crystallized, although the possibility

exists that the cores of these stars may be made of heavier elements such as

neon, which would be more crystallized.

The model which Hansen & Van Horn (1979) considered was a pure Fe

core model near 10,000 K. As a result, the theory of crystallization suggested

it should be about 99.9% crystallized by mass. The technique which we have

used would probably not be viable for this case. The problem is that we are

integrating into a point (the solid/fluid interface) where the variable z4 needs

to vanish. If we were to integrate inward from this point to some intermediate

point and match this with the solution obtained by integrating outward from

the center, i.e., shoot to a fitting point somewhere in the solid core, then we

might be able to retain enough numerical accuracy to treat larger degrees of

crystallization.

In terms of the physics, however, we are somewhat over-dramatizing

the situation, since nearly all of the pulsational results in this thesis are based

on the simple approximation that y1 = 0 at the solid/fluid boundary. From

the self-consistent treatment, we have found this to be an extremely good

approximation from 0% crystallization to 98% crystallization, and we have no

reason to believe this situation will change at higher amounts of crystallization.

Using this simplified treatment (y1 = 0 at the solid/fluid boundary), we are

therefore able to treat accurately arbitrary degrees of crystallization.
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Mode Trapping in the Asymptotic Limit

In the asymptotic limit of high k, g-modes in white dwarfs are evenly spaced

in period. This is a consequence of the following statement: in the asymptotic

limit, g-modes with different k’s sample the various regions of a model in the

same way. If we turn this statement around, we have the following: g-modes

with different k’s which do not sample the various regions of a given model in

the same way will in general not be evenly spaced. This is essentially mode

trapping in a nutshell, and it is the viewpoint which we shall exploit in our

derivation.

We will need expressions for the eigenfunctions ξr and ξh in the asymp-

totic (low-frequency) limit for g-modes for the region in which they are propa-

gating; we take these from Unno et al. (1989):

ξr =
1

ρ1/2csr

∣

∣

∣1− L2`/σ2k
∣

∣

∣

1/2 a(−1)k+1√
πkr

sin
(∫ r2

r
krdr −

π

4

)

= a(−1)k+1[`(`+ 1)]1/4
(

πρr3σkN
)−1/2

sin
(∫ r2

r
krdr −

π

4

)

, (B.1)

ξh =
1

ρ1/2r2σ2k

∣

∣

∣N2 − σ2k
∣

∣

∣

1/2 a(−1)k√
πkr

cos
(∫ r2

r
krdr −

π

4

)

= a(−1)k[`(`+ 1)]−1/4
(

N

πρr3σ3k

)1/2

cos
(∫ r2

r
krdr −

π

4

)

, (B.2)
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where these expressions are valid in the region r1 < r < r2, where r1 and r2

are the inner and outer turning points of the g-mode cavity, and a is an overall

normalization constant.

We wish to write the frequency weighting function for a mode, as given

in Kawaler, Winget, & Hansen (1985), but in the form given in Unno et al.

(1989, equation 14.19). The frequency (in the Cowling approximation) is given

by

σ2k =
1

I

∫ R

0
drr2

(

1

ρc2s
p′2 +N2ρξ2r

)

, (B.3)

where

I =
∫ R

0
drr2ρ

(

ξ2r + `(`+ 1)ξ2h
)

.

We imagine that in our model, N 2 is smooth enough so different overtones are

able to sample it in the same way, and are therefore evenly spaced.

We now imagine perturbing N 2 in a local region by an amount δN 2, so

that it acquires a “bump” which mimics the behavior of N 2 in a composition

transition zone. Since this formulation for the eigenvalue σ2 is equivalent to a

variational principle, we find that

δσ2k =
1

I

∫ R

0
drr2ρξ2rδN

2, (B.4)

where the changes to σ2 produced by the changes in the eigenfunctions are

second order, by nature of the variational principle. We therefore will use the

asymptotic eigenfunctions to evaluate equation B.4.

1. A Particular Model

For the sake of concreteness, we will assume that the transition zone we are

trying to model is the hydrogen transition zone, which is at a radius of rH . For
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simplicity’s sake, we parameterize the bump in the Brunt-Väisälä frequency in

this region by

δN2 = 2N0N1
1√
πdH

e−(r−rH)2/d2
H , (B.5)

where N0 is the “background” unperturbed Brunt-Väisälä frequency which

smoothly connects to each side of the transition zone, dH is a measure of the

width of the transition zone, and N1 measures the strength of the bump in N

in units of cm-hz.

Since δN 2 is nonzero only in the immediate vicinity of rH , we use the

following approximate expression valid for r ∼ rH in the argument of the sin

function:

∫ r2

r
krdr =

∫ r2

rH

krdr −
∫ r

rH

krdr

≈ π
Pk
ΠH

− kr(r − rH),

where

ΠH ≡
2π2

√

`(`+ 1)

1
∫ r2
rH
Ndr/r

.

With these relations and equations B.1 and B.2 for the eigenfunctions, equation

B.4 becomes

δσ2k =
a2

I

2
√

`(`+ 1)N1√
πσkdH

∫ r2

r1
(dr/r)e−(r−rH)2/d2

H sin2 [kr(r − rH) + φP ] , (B.6)

where

φP ≡
π

4
− π Pk

ΠH

.

Since the integrand in B.6 decays rapidly away from the point rH , we can

replace the limits of integration (r1, r2) with (−∞,+∞), without adding sig-

nificantly to the integral. If we now use the identity sin2 y = (1 − cos 2y)/2,
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shift the integration in terms of the new variable x ≡ r− rH , and approximate

1/r as 1/R?, then equation B.6 becomes

δσ2k =
a2

I

√

`(`+ 1)N1√
πσkdHR?

∫ ∞

−∞
dxe−x

2/d2
H (1− cos [2krx+ 2φP ])

=
a2

I

√

`(`+ 1)N1√
πσkdHR?

√
πdH

(

1 + e−k
2
rd
2
H cos 2φP

)

=
a2

I

√

`(`+ 1)N1

σkR?

(

1 + e−k
2
rd
2
H cos 2φP

)

, (B.7)

where we have used the tables of Gradshteyn & Ryzhik (1980) to perform the

integration.

We now need to evaluate the integral I:

I =
∫ r2

r1
drr2ρ

(

ξ2r + `(`+ 1)ξ2h
)

≈ `(`+ 1)
∫ R?

0
drr2ρξ2h

≈ a2

√

`(`+ 1)

πσ3k

∫ r2

r1
dr
N

r
cos2

(∫ r2

r
krdr

′ − π

4

)

,

≈ a2

√

`(`+ 1)

2πσ3k

∫ r2

r1
dr
N

r

≈ a2
k

2σ2k
,

where in the last step we have used the equation 3.21 for the asymptotic g-mode

frequency. Putting this altogether, we arrive at the following expression:

δσ2k = 2
√

`(`+ 1)
σkN1

kR?

(

1 + e−k
2
rd
2
H cos 2φP

)

,

so

δσk =

√

`(`+ 1)

k

N1

R?

(

1 + e−k
2
rd
2
H cos 2φP

)

, (B.8)

or, in terms of period this becomes

δPk = −
√

`(`+ 1)

2πk

N1P
2
k

R?

(

1 + e−k
2
rd
2
H sin(2πPk/ΠH)

)

, (B.9)
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where we have substituted for φP in the above expression. Thus, this formula

has a trapping period (period difference between trapped modes) of ΠH , which

is the result found by Brassard et al. (1992).

We now make substitutions which are valid in the asymptotic limit.

Since kr ∝ 1/σ and Pk ∼ k〈∆P 〉, we can write

δPk = Ak
(

1 + e−k
2(〈∆P 〉/PH)2 sin(2πk〈∆P 〉/ΠH)

)

, (B.10)

where 〈∆P 〉 is the average period spacing in the asymptotic limit, k is the

radial overtone number, and PH is defined as the period at which the radial

wavelength equals the transition zone thickness, i.e., krdH = 1 when P = PH .

The constant A = −
√

`(`+ 1)N1〈∆P 〉2/(2πR?) determines the strength of the

trapping.

The period spacing is given by

∆Pk = Pk+1 − Pk

≈ 〈∆P 〉+ δPk+1 − δPk

We now choose values of these parameters for comparison with the plots in

Brassard et al. (1992). Using 〈∆P 〉 = 30 sec, ΠH = 200 sec, and PH = 1000

sec, and choosing A = −2.5 sec to set the amplitude of the trapping, we have

the result shown in Figure B.1.

The most instructive feature of this figure is that it shows that in the

high overtone limit, all the modes sample the bump in the Brunt-Väisälä fre-

quency equally, so they all have a period spacing of 30− 2.5 = 27.5 sec. Thus,

the finite thickness of the transition zone manifests itself in a decaying trapping

amplitude as the period is increased, which is as expected. This effect is one
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Fig. B.1.— The variation in ∆Pk as a continuous function of the period.
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which could exist in addition to the effect calculated in Brassard et al.. In a

way, it could be thought of as a transient solution.

It would be a simple matter to treat a second perturbation in the Brunt-

Väisälä frequency which would take into account the different magnitudes of

the Brunt-Väisälä frequency on each side of the transition zone. In this case

we would simply take δN to be a constant positive value above the transition

zone, and zero elsewhere. This would produce oscillatory behavior in ∆Pk

which would not decay with period, with the full trapping behavior being the

sum of this plus the transient effect. It would still have the drawback, however,

of producing a purely sinusoidal shape to the mode trapping.

The shape of the trapping cycle does not reproduce the sharp bottom

and flat top seen in the numerical or analytical models of Brassard et al. (1992).

This is not surprising given the severity of our approximations. Since the modes

are taken to be in the asymptotic limit, nearby overtones differ mainly in the

phase with which they enter the transition zone. Since this phase varies be-

tween zero and 2π, we find that ∆Pk appears to vary sinusoidally and therefore

symmetrically, and does not exhibit the sharp bottom behavior seen in the

numerical models. Thus, the main use of this derivation is for instructive pur-

poses.

I still cannot help but think that it is the bump/spike in the Brunt-

Väisälä frequency and not the fact that it has a different baseline value on each

side of the transition zone which is the dominant effect in producing mode

trapping. If I could treat the problem of a given asymptotic mode being re-

flected and transmitted by its encounter with the spike, I could obtain formulae

relating the amplitudes above and below this region. The period of the mode
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would then be a weighted average of the
∫

Ndr/r in the two regions, scaled by

the square of the amplitude of the mode on each side of the transition zone.

2. A More General Result

The perturbation to the square of the Brunt-Väisälä frequency due to a two-

element transition zone is

δN2 =
gV

r

(

∂ ln ρ

∂ lnX1

)

T,p

d lnX1

d ln p

= −g
(

∂ ln ρ

∂X1

)

T,p

dX1

dr
, (B.11)

where V ≡ −d ln p/d ln r, and X1 is the mass fraction of element one. If we

insert this expression into equation B.4, then we obtain

δσ2k = −1

I

∫ R

0
drr2ρξ2rg

(

∂ ln ρ

∂X1

)

T,p

dX1

dr

≈ −2
√

`(`+ 1)

kπ

gσk
R?N0

∫ R?

0
dr

(

∂ ln ρ

∂X1

)

T,p

dX1

dr
, (B.12)

or, rewriting in terms of period,

δPk =
k
√

`(`+ 1)

2π2
g〈∆P 〉2
R?N0

∫ R?

0
dr

(

∂ ln ρ

∂X1

)

T,p

dX1

dr
, (B.13)

where N0 is value of the Brunt-Väisälä frequency throughout the transition

computed with the Schwarzschild criterion. In terms of our work in the previous

section, we have calculated the constant A, which is the net change in to the

mean:

A =

√

`(`+ 1)

2π2
g〈∆P 〉2
R?N0

∫ R?

0
dr

(

∂ ln ρ

∂X1

)

T,p

dX1

dr
. (B.14)

It is possible to perform a closed form integration of the integrand in B.14

for many cases of interest. Thus, we do not need to know the exact shape of
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the profile to calculate its effect on the mean period spacing in the asymptotic

limit. In fact, in the limit of very thin transition zone, P and T do not change

appreciably from the top to the bottom of the zone (since they must be con-

tinuous), so the integrand is an exact differential, and we may integrate to find

that

A =

√

`(`+ 1)

2π2
g〈∆P 〉2
R?N0

ln
ρ(+)

ρ(−) , (B.15)

where ρ(+) and ρ(−) are the densities immediately above and below the tran-

sition zone, respectively. We note that A will be negative since ρ(+) < ρ(−).

We now return to finite thickness transition zones. In some regions

of interest, we may approximate the pressure as due to a gas of completely

degenerate electrons plus an ideal (non-degenerate) gas of ions. In this limit,

we find that

(

∂ ln ρ

∂X1

)

T,p

=

{

−kT/(32mpc
2
s) O/C transition zone

−kT/(4mpc
2
s) C/He transition zone

, (B.16)

where T and c2s are the temperature and sound speed in the transition zone, X1

is the mass fraction of the lighter element, and mp is the mass of the proton.

Since this expression is independent of X1, and cs and T vary relatively slowly

through the transition zone, it is approximately constant, so we may take it

outside the integral in equation B.14. The remaining integrand is

∫

dr
dX1

dr
= X1(+)−X1(−)

= 1− 0

= 1,

where X1(+) and X1(−) are the abundances of the lighter element above and

below the transition zone, respectively.
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If we consider the ideal gas EOS for the case of the He/H transition

zone, then we have

ρ ∝ P

T (3 + 5XH)
,

where XH is the hydrogen mass fraction. This leads to

∫

dr
dX1

dr

(

∂ ln ρ

∂X1

)

T,p

= − ln
8

3
. (B.17)

For the case of both a degenerate and an ideal gas EOS, we find that

the fractional increase in the period spacing obeys the following relation:

δ〈∆P 〉
〈∆P 〉 =

A

〈∆P 〉

∝ gΠ0

R?N0

T

c2s
, (B.18)

where Π0 ≡
√

`(`+ 1)〈∆P 〉 is an `-independent function of the Brunt-Väisälä

frequency. In an ideal gas, c2s ∝ T , so the explicit temperature dependence

vanishes. Of course, the mean period spacing and the Brunt-Väisälä frequency

are both implicit functions of T .
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A Possible Shear Instability

In the context of pulsating stars, the word “instability” usually refers to whether

a particular mode is being driven or damped; if it is being driven more than

it is being damped, we say that the mode is overstable or unstable. When we

are looking at fluid motions and we are examining the stability of local fluid

elements with respect to vertical, adiabatic displacements, an instability corre-

sponds to a negative Brunt-Väisälä frequency and therefore convection. Many

additional instabilities are possible within a fluid which has a nonzero velocity

field.

One instability in particular may be of interest for white dwarf pulsa-

tions. We have seen in Chapter 3 that g-modes in our white dwarf models

exhibit a large amount of shear, i.e.,

dξh
dr
≈ ξh
HP

À ξh
R?

,

where HP is a pressure scale height. The Richardson number Ri gives us a way

of estimating the amount of shear which a stratified fluid can withstand before

it becomes unstable and mixes vertically. From Shu (1992), we have
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Ri ≡ −g(∂ρ/∂s)P (ds/dr)
ρ(dvh/dr)2

(C.1)

=
N2

(dvh/dr)2
, (C.2)

where vh is the velocity in the horizontal direction and N 2 is the Brunt-Väisälä

frequency. The condition for stable flow is

Ri >
1

4
, (C.3)

so instabilities may result if Ri is less than this value locally.

If we specialize to the case where the fluid motions are due to one mode

which has m = 0, then we have from the definition of the displacement

~vh = Re





d~ξh
dt



 (C.4)

= Re

(

iσ eiσt
d

dθ
Y 0
` (θ, φ) ξh(r)

)

θ̂ (C.5)

= −σ sinσt
d

dθ
Y 0
` (θ, φ) ξh(r) θ̂. (C.6)

Computing the magnitude of the velocity shear, we find that

dvh
dr

= −σ sinσt
d

dθ
Y 0
` (θ, φ)

dξh
dr

. (C.7)

The important thing to notice about this expression, is that it has both a time

dependence and an angular dependence, in addition to the radial dependence

in dξh/dr. Thus, if there is a finite shear threshold which a given mode is

exceeding, it will do so only at certain times and in certain angular regions of

our models.



147

We concentrate now on the magnitude of σdξh/dr, since the other terms

are of order unity; this will let us know if the shear is large enough for us to

concern ourselves with this effect. Thus, we compute

Ri =
N2

σ2(dξh/dr)2
(C.8)

as a function of r throughout our model for a given mode. In our codes, the

eigenfunctions are normalized such that ξr/R? = 1 at the surface of our models.

In reality, the amplitudes are much smaller. Robinson, Kepler, & Nather (1982)

found that the actual range of ξr/R? was from 10−4 to 10−5. Here we adopt

the value of 10−4, so we scale ξh by this factor in our calculations.

Figure C.1 shows the results for a 672 sec, ` = 1 mode in a 0.6 M¯

model with Teff = 12, 000 K. The horizontal dotted line corresponds to Ri = 1
4
;

the region above this line is stable to a shear instability and the region below

it is unstable. The region to the right of x = 12.5 is the convection zone, which

is already being mixed by a fluid instability, where x ≡ − log(1 − Mr/M∗).

The region between 11.1 and 12.5 is the region which may be susceptible to

the shear instability. Remembering the additional dependencies of the shear in

equation C.7, we see that this unstable region is actually a function both of the

phase of the oscillation cycle σt and the angular position (θ, φ) in the model.

A possible effect of this instability is to alter the driving of the oscilla-

tions. When the instability operates, the offending fluid layers will be mixed

in a turbulent manner similar to the mixing which occurs in a convection zone.

This will change the way in which these layers either drive or damp the oscil-

lations.

In the models we have examined, the shear-unstable region is directly
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Fig. C.1.— The Richardson number for a 672 sec, ` = 1 mode in a 0.6 M¯

model with Teff = 12, 000 K. The horizontal dotted line corresponds to Ri = 1
4
;

the region above this line is stable to a shear instability and the region below

it is unstable.
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below the convection region. When the instability is operating, it may be useful

to think of the convection zone as extending downward into this region, since

the turbulent mixing in the shear layers mimics the turbulent mixing which

is occurring in the convection zone itself. Restating this, we can say that the

mode generates a “self-viscosity” which is time-dependent and which acts to

mix this region. Since this effect should have an angular as well as a time

dependence, we can imagine a situation in which the mode has a luminosity

variation at the surface which is basically a spherical harmonic, but which is

clipped (or reduced) in the high amplitude regions. This will generate spatial

harmonics (a mixture of spherical harmonics) as well as temporal harmonics.

The situation in which several modes are simultaneously present offers

many more interesting possibilities. In this case, the fluid motions do not

slowly bump the shear threshold as in the case of a single mode slowly growing

in amplitude. Rather, two different modes can suddenly coherently add in

a region and exceed the threshold. These modes “crash” against each other,

dissipating their local kinetic energies. This would seem to be an amplitude

limiting mechanism. Interestingly, even relatively small amplitude modes could

dissipate their energy in this way by “piggy-backing” on top of a large amplitude

mode. Thus, a single large-amplitude mode could regulate the amplitudes of

most or all of the other excited modes.

While Figure C.1 shows that this is at least a superficially plausible idea,

we stress that this is only a possible mechanism, and may not be relevant for

actual pulsating white dwarf stars. A detailed investigation would be required

to determine the exact phenomenology associated with this mechanism.





Appendix D

The Detectability of p-modes

It is an agreed-upon “fact” that the cause of most of the observed pulsations in

white dwarf stars is due to g-mode pulsations. In white dwarf models, g-modes

are “envelope” modes, and p-modes are “core” modes. That is, the g-modes

have more of their kinetic energy concentrated toward the surface than do the

p-modes. Thus, we would expect to see g-mode oscillations much more readily

than p-mode oscillations, even if there were an identical amount of kinetic

energy in both sets of modes. Observationally, p-modes would be difficult to

detect since the short timescale variability which they produce can be mimicked

and masked by the short term variability of the Earth’s atmosphere.

Ignoring the large observational difficulties and conventional wisdom, we

ask whether it is plausible for p-modes to exist in white dwarfs at “observable”

amplitudes. In the asymptotic limit, the period/frequency weight function is

a tracer for the kinetic energy of a mode. In Figure D.1, we plot the weight

functions for p- and g-modes for a 0.6 M¯ DAV model (Teff = 12, 000 K). We

see that the p-mode periods are formed much deeper those of the g-modes. We

would therefore not expect the p-modes to be easily observable.

If Figure D.2, we plot the same quantities but for a DBV model. Since

this is a hotter model (Teff = 25, 000 K), it is less degenerate in its interior, so
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Fig. D.1.— A comparison of the weight functions for p-modes (dotted line)

and g-modes (solid line).
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the Brunt-Väisälä frequency is larger in its core. The result is that the g-modes

appear to be formed deeper in the model and sample the star in roughly the

same manner as the p-modes. This leads us to believe that if the p-modes have

roughly the same kinetic energies as the g-modes, then these modes may have

observable amplitudes at the surface.

In Table D.1, we have tabulated the results of a nonadiabatic calculation.

For this calculation, we scaled the value of the luminosity perturbation at the

surface, y6, so that all the modes have 1033 ergs of kinetic energy. We then

compared this scaled y6 for several different g- and p-modes; the modes below

the solid line are p-modes, which can be seen from their short periods (< 1

sec). This table shows us that the high overtone p-modes should be just as

“observable” as the g-modes. This calculation is made ignoring perturbations

to the convective flux, so the value of y6 at the surface could be quite different

than that computed here. Furthermore, we caution that this argument says

nothing about the different driving mechanisms for the two classes of modes,

so there may be other reasons for p-modes to not be present in white dwarf

stars.

In Table D.2, we show the same results for the cooler DAV model.

We see again that the p-modes appear to be as detectable as the g-modes,

according to the criteria used above. It would apppear that the issue of the

visibility of these modes comes down to one of driving. Since the p-modes have

much shorter periods, they must be driven in regions of the star which have

much shorter thermal timescales. This means they must be driven closer to the

surface than the g-modes are, in layers which have much less thermal energy

to pump into the pulsation modes. If we assume that the energy available to
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Fig. D.2.— A comparison of the weight functions for p-modes (dotted line)

and g-modes (solid line).
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Table D.1. Normalized y6 for p- and g-modes in a DBV model

` k Period (s) y6

1 12 577.66 0.0011

1 13 620.00 0.0005

1 14 664.55 0.0011

1 15 705.74 0.0054

1 16 740.08 0.0130

1 17 779.56 0.0182

1 17 0.753 0.0009

1 22 0.592 0.0029

1 26 0.505 0.0062

1 33 0.398 0.0154

1 43 0.302 0.0337

1 62 0.199 0.1342

Table D.2. Normalized y6 for p- and g-modes in a DAV model

` k Period (s) y6

1 10 583.316 0.0105

1 11 641.665 0.0147

1 12 672.327 0.0157

1 13 721.105 0.0250

1 14 764.813 0.0269

1 20 0.710 0.0040

1 24 0.601 0.0084

1 29 0.503 0.0164

1 37 0.398 0.0331

1 49 0.300 0.0648
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drive the modes scales like the mass of the driving region, then there should

be 2 to 3 orders of magnitude less energy available for the p-modes, which

would reduce their surface luminosity perturbations by at least a factor of 10

compared to the g-modes. In addition, the p-mode periods are of the same

order as the convective turnover time for fluid elements in the convection zones

of the white dwarf models, so significant and difficult to describe interactions

may occur between the convection zone and the p-modes. This might result in

either damping or driving of the p-modes.

Finally, in analogy with the Sun, we might expect the convection zones

of white dwarfs to stochastically excite p-mode oscillations. In other words, the

intrinsic “noise” associated with the fluid motions of the convection zones could

dynamically excite p-modes in white dwarfs. The amplitudes of these modes

would then decay with time after a number of cycles. However, as with the

Sun, we would expect these modes to have very large values of ` and therefore

have unobservably small amplitudes when integrated over the disk of the star.



Appendix E

Computer Codes

1. Modifications to WDEC—Matt’s Version

1.1. Description of Changes

The modifications to include phase separation in Matt’s version of the white

dwarf evolution code (WDEC) were begun by Eric Klumpe and detailed in

his Master’s thesis (Klumpe 1995). These included the generation of a new

subroutine, phasep.f, which calculated the change in chemical composition

of the white dwarf core as it crystallized and adjusted the composition of the

remaining fluid layers to reflect this chemical change. Klumpe used the phase

diagram of Barrat, Hansen, & Mochkovitch (1998) to compute the composition

changes. In this present treatment, we use phase diagrams by Segretain &

Chabrier (1993) and Ichimaru, Iyetomi, & Ogata (1988).

The above changes address the new mechanical structure of the star after

phase separation, but do not address the energetics. By performing the above

manipulations. i.e., recalculating the array which contains the compositional

profile of the model, we are in effect making the following assumption: the

material is able to rearrange itself on timescales which are short compared to

the evolutionary timesteps, and this process generates no corresponding release
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of energy. In order to self-consistently enforce conservation of energy, we must

include an additional energy source which is present during phase separation.

We have used the formalism set out in Isern et al. (1997) and Chabrier

(1997) to calculate this release of energy. It was included in the evolution code

as a negative neutrino luminosity, with two wrongs for once making a right. A

summary of the changes made to the evolution code is given in below, listed

by the subroutine in which the modification was made.

calc.f Added the common block common/density/dens(400),cv1(400) to

store values for the density and heat capacity. This allows calls to be

made in phasep2.f directly to the Lamb IEOS code, which takes temper-

ature and density as inputs.

end.f Added calls to xbndry2.f, phasep2.f, and ephase.f. The movement of the

crystallization front and the associated release of phase separation energy

is taken into account with each iteration of the model, so that the degree

of crystallization can dynamically adjust to the release of ps energy.

ephase.f A new subroutine which calculates the total phase separation energy

released during a timestep using calls to ieos.f, the Lamb equation of state

Code.

gray.f Added a test so that code exits for a Teff < Tmin(= 2100 K). This

prevents the code from hanging for Teff < 2000 K, so more files can be

batch processed.

istatco.f Added in phase separation energy through enxtal2(400), and its

derivatives, dphdt and dphdt, all of which are stored in common/xenergy2.
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We include the phase separation energy as a negative neutrino luminosity.

opacsubs.f Moved and split the common block common/crystal to the func-

tion opac. The code now correctly implements the opacity limiting de-

fined by the input parameter oradlimit.

openem.f Now opens additional files: phase_energy.dat, phase_energy2.dat,

and profile.dat These files are used to store information relating to

crystallization and phase separation.

phasep2.f A major modification of Klumpe’s phasep.f. Calculates the the new

C/O profile as well as the energy released due to phase separation. Also

includes the latent heat of crystallization of the last partially crystallized

shell, to enable the code to converge more easily.

read2.f Now writes output to file phase_energy2.dat. This output includes

phase separation information, as well as the luminosity function.

wdxd.f Moved read statement for crystallization and convection control flags

from read2.f to wdxd.f. The variable oradlimit is now safely defined before

it is used in the opacity calls in read1.f.

xbndry.f Made changes to keep jx from exceeding jb-1, and limit amxc to be

equal to the stop mass at complete crystallization. Also set iphasepflag

= 0 if completely crystallized. Turns off phase separation routines if core

is completely crystallized (iphasepflag=0).

xbndry2.f An altered copy of xbndry.f. It computes amxc, damxcdt, and

damxcdp with each iteration of calc.f through the core. damxcdt and
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damxcdp are the change in Mxtal with temperature and pressure, respec-

tively. These are needed for the derivatives of the phase separation energy

with respect to these variables.

In addition to changing the evolution code itself, I have altered slightly

the format of the header for the input evolutionary models. The line in the

input file where the switches controlling crystallization and convection are read

was moved so that it now comes directly after the switches for the convective

mixing length. This allows the opacity limiting parameter, oradlimit, to be

defined before it is used in the opacity calls in read1.f.

In the following I give the code for the two new routines ephase.f and

phasep2.f, which are the most important for calculating the energy released by

phase separation and the changing C/O profiles.
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1.2. Source Code

c

c ******************************************************************************

c This is a modification by MHM (October/November 1997) of phasep by

c EWK. On the first call, it calculates the composition profile as a

c function of the crystallized mass-fraction, and then it calculates

c the energy released due to this phase separation, also as a function

c of crystallized mass fraction. On subsequent calls, it uses the

c current crystallized mass-fraction as computed in xbndry2 to do a

c spline interpolation for the energy released, and it distributes this

c energy in such a way that the fractional temperature perturbation

c (dT/T) should be constant. The composition redistribution algorithm

c is now able to deal with nonuniform initial distributions of xc (and

c xo), although it really only makes physical sense for initial

c distributions in which xo does not increase with increasing mass.

c This is because the criterion for mixing the interior fluid layers

c with an overlying fluid layer is that the result of the mixing is to

c decrease the carbon content of the innermost fluid layers, so that

c there is a net movement of carbon outwards, and oxygen inwards. Once

c a range of shells are considered mixed, the composition is set to be

c uniform within them. As a final tweak, along with the phase-separation

c energy I include the latent heat contribution of the partially

c crystallized shell, i.e., if the 51st shell is 20% crystallized, then

c I add in 20% of the energy that would be released if it were crystallized,

c with most of this energy being deposited with a gaussian distribution

c peaked at the 51st shell (actually, it’s centered on the crystallized

c mass-fraction and interpolated onto the mass grid). Needless to say, this

c greatly helps convergence since it helps prevent oscillations in the

c the crystallized mass-fraction. In order to avoid adding a net amount

c of energy via this procedure, however, a constant baseline is subtracted

c from this distribution so that no net energy is introduced into the

c system.

c******************************************************************************

c This subroutine was added by EWK on July 25, 1995. Once a shell is

c crystallized this subroutine will take the C/O abundances of the

c fluid phase and compute the C/O abundance of the corresponding solid

c phase using a phase diagram (phzdia.dat for example). This

c subroutine will then compute the oxygen depletion and the carbon

c enhancement for the remaining fluid layers and redistribute these

c changes throughout the fluid layers in a homogeneous fashion.

c******************************************************************************

c
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subroutine phasep2

implicit double precision (a-h, o-z)

common/shells/ sa(400),ra(400),ba(400),pa(400),ta(400),

1 ea(400),xca(400),fca(400),s(400),r(400),b(400),

2 p(400),t(400),e(400),xc(400),sk(400),

3 rk(400),bk(400),pk(400),tk(400)

common/contrl/ds,g,sm,wc,it,nite,ja,jb,j,k,l

common/xbnd/amxc,amxo,gold

common/crystal/jxlast,jx,firstcall,iphasepflag,

1 ixtalyes,iconvyes

common/crystal2/xcinit(400),oradlimit

c common/compold/xcold(400),xcn(400)

common/density/dens(400),cv(400)

common/phasecalc/iphcalc

common/xenergy2/phengy(400),dphdt(0:400),dphdp(0:400),totph(400),

1 enxtal2(0:400),dphdm(400),damxdt,damxdp

common/epflag/epflag1

common/debug/debug

common/temp3/temp3(2,12)

common/jxhist/jxold

c common/amxchist/amxcold,amxcvold

common/amxchist/amxcold

c common/dsave/xx,yy,yy2,sprof,lprof,sprof2,lprof2,dmass

common/dsave/xx,yy,yy2,xcp,dmass,massx,massf

common/startx/istartxtal

common/xcxtal/xcxtal(400),enxtal2a(400),fnxtal

common/xistat/en2spline(400),xmass(400),en2dd(400)

common/nxistat/nxsp

common/blum/bl,bla

common/once2/once2

logical debug,once2

dimension fluid(400), solid (400)

c common/prep/ aa(19,800),ecv(400),ext(400),exr(400),iprep

double precision cprof(400),xcprof(0:400,400),

1 phengy,dmass(400),dudx(400),dphdm,norm,damxdt,damxdp,erelease,

2 xx(400),yy(400),yy2(400),xcomp,massx(400),massf(400),xcp(400,400),

3 profile1(400),profile2(400),p1(400),p2(400)

if (istartxtal.eq.0) then

if (jx.gt.0) then

istartxtal=1

else

return
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endif

endif

c iphcalc = 1

jxnew = jb-1

debug = .false.

if (epflag1.eq.0) then

once2 = .false.

epflag1 = 1

endif

fnat = log10(exp(1.0))

iazeo=0

star=10**sm

pi=3.141592635

totmass=0.0

if (iphcalc.eq.1) go to 500

iphcalc = 1

open(66,file=’phase3.dat’,status=’unknown’)

write(*,199)

amxcvold=0.0

amxcold=0.0

199 format(’Entering phasep2: calculating phase separation energy’/,x,

1 ’as a function of crystallized mass fraction’)

c

c Compute the composition changes for the shells that have just crystallized.

c

do 50 ijk = 1, 400

c xc(ijk) = xcinit(ijk)

xcinit(ijk) = xc(ijk)

cprof(ijk) = xcinit(ijk)

xcprof(0,ijk) = xcinit(ijk)

50 continue

c

do 300 ixtal = 1, jxnew

c

c Compute the mass of the shell that is crystallizing

c

shellmass = 10.**s(ixtal+1) - 10.**s(ixtal)

c shellmass = (aa(2,ixtal+1)-aa(2,ixtal))/star

c shellmassc = xc(ixtal)*shellmass

shellmassc = cprof(ixtal)*shellmass

shellmasso = shellmass - shellmassc
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c

c Input the phase diagram

c iphasepflag=1 for Segretain and Chabrier 1993, A & A, 271, L13

c iphasepflag=2 for Ichimaru, Iyetomi, and Ogata 1988, 334, L17

if (iphasepflag.eq.1) then

c open(60, file = ’phzdia.dat’, status = ’old’)

open(60, file = ’phzSeg.dat’, status = ’old’)

elseif (iphasepflag.eq.2) then

open(60, file = ’phzIch.dat’, status = ’old’)

endif

read (60, *) fluid(1), solid(1)

read (60, *) fluid(2), solid(2)

i = 2

c 100 if (fluid(i) .lt. xc(ixtal)) then

100 if (fluid(i) .lt. cprof(ixtal)) then

i = i + 1

read (60, *) fluid(i), solid(i)

goto 100

endif

close (60)

c

c Compute the new carbon mass-fraction

c

c xcnew = (solid(i)-solid(i-1))*(xc(ixtal)-fluid(i-1))/

c 1 (fluid(i)-fluid(i-1)) + solid(i-1)

xcnew = (solid(i)-solid(i-1))*(cprof(ixtal)-fluid(i-1))/

1 (fluid(i)-fluid(i-1)) + solid(i-1)

c put in a kludge to account for mixing with an azeotropic phase diagram

if (xcnew.gt.cprof(ixtal) .and. iazeo.eq.0) then

iazeo=1

dx1=solid(i-1)-fluid(i-1)

dx2=solid(i)-fluid(i)

xazeo=(dx2*fluid(i-1)-dx1*fluid(i))/(dx2-dx1)

write(*,*) ’azeotropic concentration =’,xazeo

endif

if (iazeo.eq.1) then

fluidmass = 0.0

fluidmassc = 0.0

do ii=ixtal+2,jb

dfluidmass = 10**s(ii) - 10.**s(ii-1)

dfluidmassc= cprof(ii-1)*dfluidmass

fluidmass = fluidmass + dfluidmass

fluidmassc= fluidmassc+ dfluidmassc

fluidmasso = fluidmass - fluidmassc



165

enddo

shellmassonew = (1.-xcnew)*shellmass

xazeored=1.-fluidmasso/shellmass

c write(*,*) ixtal,xazeored

if (xazeored.gt.xazeo) then

xcnew=xazeored

else

xcnew=xazeo

endif

endif

c

c Compute the new mass-fractions for the fluid layers. Recall that

c crystallization reduces the carbon content and enhances the oxygen

c content of the crystallizing layer. Because the star is supported by

c degenerate electron pressure, the positively charged ions go along

c for the ride and distribute themselves in a way that maintains charge

c neutrality. Therefore, for every 8 carbon nuclei (Z = 6, or a total

c charge of +48) that leave the crystallizing layer 6 oxygen nuclei (Z

c = 8, or a total charge of +48) replace them. Because the mass ratios

c are very similar there is no change in the mass due to

c crystallization. (Actually, the mass remains unchanged only to

c first-order. The Coulomb interactions can either soften or stiffen

c the equation of state and this is what links phase separation to the

c release of gravitational potential energy.)

c

c

shellmasscnew = xcnew*shellmass

shellmassonew = shellmass - shellmasscnew

deltamass = shellmassc - shellmasscnew

c

c fluidmass = 1. - 10.**s(ixtal+1)

fluidmass = 0.0

fluidmassc = 0.0

do ii=ixtal+2,jb

dfluidmass = 10**s(ii) - 10.**s(ii-1)

dfluidmassc= cprof(ii-1)*dfluidmass

fluidmass = fluidmass + dfluidmass

fluidmassc= fluidmassc+ dfluidmassc

c fluidmass = 1. - aa(2,ixtal+1)/star

c fluidmassc = xc(jb)*fluidmass

if (fluidmass .lt. 0.00000001) then

xcfluid = 1.0

xofluid = 0.0

else
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c fluidmassc = cprof(jb)*fluidmass

fluidmasso = fluidmass - fluidmassc

xcfluid = (fluidmassc + deltamass)/fluidmass

xofluid = 1. - xcfluid

endif

if (xcfluid .lt. cprof(ii)) goto 106

enddo

106 continue

c if ( ii.gt.jb ) ii=jb

ii=ii-1

if ( (ixtal+2).gt.jb ) then

xcfluid = 1.0

xofluid = 0.0

endif

c

c xc(ixtal) = xcnew

cprof(ixtal) = xcnew

c write(66,105) ixtal,jb,ii,fluidmass,fluidmassc,fluidmasso,xcnew,

c 1 xcfluid,xcinit(ixtal),10**s(ixtal)

105 format(3(i4,x),7(e12.5,2x))

do i = ixtal+1, ii

c xc(i) = xcfluid

cprof(i) = xcfluid

enddo

do i = 1, jxnew

xcprof(ixtal,i)=cprof(i)

enddo

300 continue

c do j=1,jb

c write(66,10) j,xcinit(j),cprof(j),xcprof(0,j),xcprof(18,j)

c enddo

10 format(i4,x,4(e12.5,2x))

c the follwoing lines calculate the internal energy using the Lamb code

write(*,*) ’calculating phase separation energy release’

do i=1,jb-1

c rho=10**aa(5,i)

c temp=10**aa(4,i)

c press=10**aa(6,i)
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c rad=10**aa(1,i)

c radp1=10**aa(1,i+1)

rho=10**dens(i)

temp=10**t(i)

press=10**p(i)

rad=10**r(i)

radp1=10**r(i+1)

dmass(i)=4.*pi*rad**2*(radp1-rad)*rho

ixtal = 2

je=3

call ieos(log10(temp),log10(rho),ixflag,je)

uca = temp3(ixtal,6)

eca = temp3(ixtal,9)

etca = temp3(ixtal,11)

je=4

call ieos(log10(temp),log10(rho),ixflag,je)

uox = temp3(ixtal,6)

eox = temp3(ixtal,9)

etox = temp3(ixtal,11)

cvca = etca*10**eca*fnat

cvox = etox*10**eox*fnat

dudx(i)=(10**uca - 10**uox)/rho

totmass=totmass+dmass(i)

enddo

c write(*,*) ’totmass =’,totmass

totutot=0.0

factor=1.e+46

do ix=1,jxnew

utot=0.0

do i=1,jb-1

dx=xcprof(ix,i)-xcprof(ix-1,i)

dutot=dx*dudx(i)

utot = utot + dmass(i)*dutot

c if (ix.eq.1) write(66,12) i,dx,dudx(i),dmass(i),dutot,utot,

c 1 xcprof(ix,i),xcprof(ix-1,i)

enddo

phengy(ix)=utot

totutot=totutot+utot

totph(ix)=totutot

c fmass=aa(2,ix)/star

fmass=10**s(ix)

xx(ix)=fmass

yy(ix)=totph(ix)

c dphdm = (phengy(ix)-phengy(ix-1))/dmass(ix-1)
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dphdm(ix) = phengy(ix)/dmass(ix)

c write(66,13) ix,fmass,phengy(ix),totutot,dphdm(ix),dx,

c 1 xcprof(ix,ix),xcprof(ix,ix+1)

write(66,13) ix,fmass,dmass(ix),phengy(ix)/factor,totutot/factor,

1 dphdm(ix),xcprof(ix,ix),xcinit(ix)

enddo

11 format(i4,x,f7.5,2x,3(e12.5,2x),2(f8.6,2x))

13 format(i4,x,f7.5,2x,6(e12.5,2x))

12 format(i4,x,7(e12.5,2x))

c Set up spline coefficients for phase-separation energy and composition

c composition profiles (routines from Press et al 1996)

write(*,*) ’Settine up spline coefficients for phase-separation energy’

write(*,*) ’and composition profiles’

nxx = jxnew

call xspline(xx,yy,nxx,1.d+30,1.d+30,yy2)

do ixtal=1,nxx+1

if (ixtal.eq.1) then

massx(1)=0.0

else

massx(ixtal)=10**s(ixtal-1)

endif

do i=1,nxx

massf(i)=10**s(i)

xcp(ixtal,i)=xcprof(ixtal-1,i)

c xcp(i,ixtal)=xcprof(ixtal-1,i)

enddo

enddo

500 continue

if (jxold .eq. 0) then

fmass1 = 0.0

else

fmass1=10**amxcold

endif

fmass2=10**amxc

call xlocate(massx,nxx+1,fmass2,jcryst)

write(*,*) ’jx jxold jcryst nxx jb’,jx,jxold,jcryst,nxx,jb

do n=1,nxx

profile1(n)=xcp(jcryst,n)
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profile2(n)=xcp(jcryst+1,n)

enddo

big=1.03+30

call xspline(massf,profile1,nxx,big,big,p1)

call xspline(massf,profile2,nxx,big,big,p2)

do n=1,jb

fmass = 10**s(n)

call xsplint(massf,profile1,p1,nxx,fmass,xcomp1)

call xsplint(massf,profile2,p2,nxx,fmass,xcomp2)

xcomp=xcomp1+(xcomp2-xcomp1)*(

1 (fmass2-massx(jcryst))/(massx(jcryst+1)-massx(jcryst)) )

if (xcomp.gt.1.0) xcomp=1.0

if (xcomp.lt.0.0) xcomp=0.0

xc(n)=xcomp

if (sa(n).le.s(jb)) then

fmassa= 10**sa(n)

call xsplint(massf,profile1,p1,nxx,fmassa,xcomp1)

call xsplint(massf,profile2,p2,nxx,fmassa,xcomp2)

xcomp=xcomp1+(xcomp2-xcomp1)*(

1 (fmass2-massx(jcryst))/(massx(jcryst+1)-massx(jcryst)) )

if (xcomp.gt.1.0) xcomp=1.0

if (xcomp.lt.0.0) xcomp=0.0

xcxtal(n)=xcomp

endif

108 format(5(e12.5,x))

enddo

norm=0.0

totmass=0.0

do n=1,jb-1

rho=10**dens(n)

rad=10**r(n)

radp1=10**r(n+1)

dmass(n)=4.*pi*rad**2*(radp1-rad)*rho

totmass=totmass+dmass(n)

norm=norm + dmass(n)*cv(n)*10**t(n)

enddo

c write(*,*) ’totmass = ’,totmass

c calculate latent heat release due to partial crystallization

c of a shell and add it into enxtal2 in hopes of preventing numerical

c oscillations (MHM)

rho=10**dens(jx)

temp=10**t(jx)



170

ixtal = 1

je=3

call ieos(log10(temp),log10(rho),ixflag,je)

ucaliq = temp3(ixtal,6)

je=4

call ieos(log10(temp),log10(rho),ixflag,je)

uoxliq = temp3(ixtal,6)

ixtal = 2

je=3

call ieos(log10(temp),log10(rho),ixflag,je)

uca = temp3(ixtal,6)

je=4

call ieos(log10(temp),log10(rho),ixflag,je)

uox = temp3(ixtal,6)

dlatentdm = (xc(jx)*(10**uca-10**ucaliq) +

1 (1.-xc(jx))*(10**uox-10**uoxliq))/rho

dlatent = -dlatentdm*star*(10**amxc-10**s(jx))

c artificially reduce the amount of latent heat by a factor of 5

dlatent = dlatent/2.0

dphdt(0)=0.0

dphdp(0)=0.0

enxtal2(0)=0.0

deltam=1.e-05

fmass2p=fmass2+deltam

call xsplint(xx,yy,yy2,nxx,fmass1,energy1)

call xsplint(xx,yy,yy2,nxx,fmass2,energy2)

call xsplint(xx,yy,yy2,nxx,fmass2p,energy2p)

erelease=energy2-energy1

c multiply by factor to correct for nonconstancy of \epsilon_{phase}

c fc=(1.+.5*(10**bl-10**bla)/10**bl)

c why not use the "exact" expression for fc?

fc=b(jb)/(.5*(b(jb)+10**bl))

c fc=1.0

c erelease=erelease*fc

c erelease=erelease-dlatent

dextaldm=(energy2p-energy2)/deltam

c erelease=(totph(jx)-totph(jxold))+dphdm(jx)*star*(10**amxc-10**s(jx))

c try an alternate way of computing derivatives

damxdp2=(4.*pi*log(10.)/(6.67d-8*star**2))*10**(p(jx)+4.*r(jx)-s(jx))

deltat=.001

dpfcdt=(phasec(t(jx)+deltat)-phasec(t(jx)))/deltat

dpfodt=(phaseo(t(jx)+deltat)-phaseo(t(jx)))/deltat

dpfdt = xc(jx)*dpfcdt + (1-xc(jx))*dpfodt
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damxdt2=-damxdp2*dpfdt

damxdt=damxdt2

damxdp=damxdp2

do n=1,jx-1

enxtal2(n)=0.0

dphdp(n)=0.0

dphdt(n)=0.0

enddo

do n=1,jb-1

c form=exp(-(dfloat((n-jx))/1.318)**2)

anorm=3.5*dmass(jx)/star

form1=exp(-((10**s(n)-10**amxc)/anorm)**2)

form2=(dmass(n)/star)*form1/(sqrt(pi)*anorm)

c the following line subtracts out the latent heat from the entire core

enxtal2(n)= -(cv(n)*10**t(n)/norm)*(fc*erelease+dlatent)

c this line adds in the latent heat contribution to the shells which

c are in the process of crystallizing (MHM), so there is no net contribution

enxtal2(n)=enxtal2(n)+dlatent*form2/dmass(n)

dphdt(n) = -(cv(n)*10**t(n)/norm)*dextaldm*damxdt*form1

dphdp(n) = -(cv(n)*10**t(n)/norm)*dextaldm*damxdp*form1

c dphdt(n) = -(cv(n)*10**t(n)/norm)*dphdm(n)*damxdt*star

c dphdp(n) = -(cv(n)*10**t(n)/norm)*dphdm(n)*damxdp*star

if (jx.eq.jxold) then

dphdt(n) = 0.0

dphdp(n) = 0.0

endif

ratio=enxtal2(n)/(cv(n)*10**t(n))

en2spline(n)=enxtal2(n)

xmass(n)=10**s(n)

c write(66,530) n,xca(n),xc(n),enxtal2(n),form2,dphdt(n),dphdp(n)

enddo

nxsp=jb-1

c call xspline(xmass,en2spline,nxsp,big,big,en2dd)

c call xsplint(xmass,en2spline,en2dd,nxsp,fmass,xcomp1)

do n=1,jb

if (sa(n).le.s(jb)) then

fmassa=10**sa(n)

call xsplint(xmass,en2spline,en2dd,nxsp,fmassa,xtal)

enxtal2a(n)=xtal

endif

enddo

ertot=0.0
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do i=1,jb-1

ertot=ertot+enxtal2(i)*dmass(i)

enddo

write(*,111) ’ ps energy released = ’,-erelease

write(*,111) ’ latent heat released = ’,dlatent

write(*,111) ’total energy released = ’,ertot

Write(*,*) ’fc bl bla = ’,fc,dlog10(b(jb)),bl

111 format(a,e12.5)

c write(*,109) damxdt,damxdp,dphdt(jx),dphdp(jx)

c write(*,110) damxdt2,damxdp2,dpfcdt,dpfodt,dpfdt

109 format(’damxdt damxdp dphdt dphdp = ’,4(e12.5,x))

110 format(’damxdt2 damxdp2 dpfcdt dpfodt dpfdt = ’,5(e12.5,x))

530 format(i3,x,6(e12.5,2x))

print *, ’Exiting phasep2’

c stop

return

end
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c ******************************************************************************

subroutine ephase(nshint)

implicit double precision(a-h,o-z)

c......................................................................

c calculate phase separation integral from Isern et al. (preprint,

c March 5, 1997) MHM (May 1997)

c......................................................................

double precision mu_e,kb,lsun,dmass(400),ratio(400),

1 temperature(400),norm

integer epflag1

common/shells/ sa(400),ra(400),ba(400),pa(400),ta(400),

1 ea(400),xca(400),fca(400),s(400),r(400),b(400),

2 p(400),t(400),e(400),xc(400),sk(400),

3 rk(400),bk(400),pk(400),tk(400)

common/compold/xcold(400),xcn(400)

common/density/dens(400),cv(400)

common/phaseen/utot,totutot

common/vca/sg,modnr

c common/temp/s1,r1,s2,r2,b2,p2,t2,ea2,xc2,xo2,fca2,f2,q2,w2,c

c common/xx/sin,sout,smid,grid1,grid2,ucent,cste,kon,kom

c common/surf/u(2,3),v(2,3),ww(2,3),rm,bm,is,ks,ls,ms,kstart,npass

common/xbnd/amxc,amxo,gold

c common/d/ ml(3,70),nmax,kind,lmax,nsuff,nlim,nlim1,jjj,iter,lmam,

c 1 nlum,ko,nhp

common/xenergy/enxtal(400),gtime

common/prep/ aa(19,800), ecv(400), ext(400), exr(400),iprep

common/epflag/epflag1

integer nshint

common/debug/debug

common/once2/once2

common/temp3/temp3(2,12)

logical debug,once2

c debug = .true.

debug = .false.

if (epflag1.eq.0) then

once2 = .false.

epflag1 = 1

endif

fnat = log10(exp(1.0))

z1=6.

a1=12.
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z2=8.

a2=16.

mu_e=2.

kb=1.380658e-16

uint=0.0

utot=0.0

pi=3.141592635

rgas=8.3145e+07

lsun=3.8268e+33

totmass=0.0

nel=nlim

ntot=nlim+nshint

write(*,*) ’Entering ephase.f’

do n=1,nshint-1

dx=xc(n)-xca(n)

c rho=10**(aa(5,n))

c temperature(n)=10**(aa(4,n))

c press=10**(aa(6,n))

c rad=10**(aa(1,n))

c radp1=10**(aa(1,n+1))

temperature(n)=10**t(n)

press=10**p(n)

rad=10**r(n)

radp1=10**r(n+1)

rho=10**dens(n)

gammae=(2.272e+05)*(rho/mu_e)**(1./3.)/temperature(n)

fac=z1**(5./3.)/a1-z2**(5./3.)/a2

duint=-.9*rgas*temperature(n)*gammae*dx*fac

dmass(n)=4.*pi*rad**2*(radp1-rad)*rho

totmass=totmass+dmass(n)

dvol=4.*pi*rad**2*(radp1-rad)

uint=uint+dmass(n)*duint

c the next lines calculate the internal energy using the Lamb code

ixtal = 2

je=3

call ieos(dlog10(temperature(n)),dlog10(rho),ixflag,je)

uca = temp3(ixtal,6)

eca = temp3(ixtal,9)

etca = temp3(ixtal,11)

je=4

call ieos(dlog10(temperature(n)),dlog10(rho),ixflag,je)
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uox = temp3(ixtal,6)

eox = temp3(ixtal,9)

etox = temp3(ixtal,11)

cvca = etca*10**eca*fnat

cvox = etox*10**eox*fnat

c cv(n) = (xcn(n)*cvca + (1.-xcn(n))*cvox)

c cv(n) = aa(8,n)

c dutot=dvol*(xcn(n)*10**uca + (1.-xcn(n))*10**uox)

dutot=dx*(10**uca - 10**uox)/rho

utot = utot + dmass(n)*dutot

c write(63,10) rad,press,temperature(n),rho,xca(n),

c 1 xc(n),uca,uox

enddo

10 format(8(e12.5,2x))

norm=0.0

if (utot.gt.0.0) utot=0.0

do n=1,nshint-1

norm=norm + dmass(n)*cv(n)*temperature(n)

enddo

do n=1,nshint-1

c the negative sign in the line below makes this a thermal energy *source*

enxtal(n)=-(cv(n)*temperature(n)/norm)*utot

c enxtal(n)=enxtal(n)/1000.

c ratio(n)= log10(1.+abs(enxtal(n)/(cv(n)*temperature(n))))

ratio(n)= enxtal(n)/(cv(n)*temperature(n))

c rad=10**(aa(1,n))

rad=10**r(n)

c press=10**(aa(6,n))

press=10**p(n)

write(63,10) 10**s(n),press,temperature(n),10**dens(n),cv(n),

1 xc(n),enxtal(n),ratio(n)

xcold(n)=xcn(n)

enddo

toten=toten+uint

totutot=totutot+utot

write(63,*) ’phase separation energy this time step = ’,uint

write(63,*) ’total phase separation energy so far = ’,totutot

write(63,*) ’total integrated energy = ’,utot

write(*,*) ’ps energy released (analytic) = ’,uint

write(*,*) ’ps energy released (Lamb code) = ’,utot

write(*,*) ’log luminosity = ’,dlog10((dabs(utot)/10**gtime)/(3.826e+33))

bl=dlog10(aa(3,ntot)/lsun)
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radius=aa(1,ntot)

c write(*,*) ’lum radius = ’, aa(3,ntot),radius

tel=bl/4.-radius/2.+9.18458

factor=1.e45

c write(64,161) modnr,sg,p2,t2,ucent,radius,tel,bl,10.d0**amxc,

c 1 utot/factor,totutot/factor

161 format(i4,1p,e12.5,0p,f7.3,2f7.4,f8.4,f7.4,2f9.4,2x,e12.5,

1 2x,e14.7)

return

end
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2. Modifications to the Pulsation Codes

2.1. Description of Changes

The changes made in the pulsation code cjhanro.f, written by Carl Hansen,

are fairly minor. In the new code, cjhxtal.f, all that has been done is to set

y1 = 0 at the boundary between the solid core and the liquid above it. In

essence, we have moved the inner boundary condition out from the center to a

point determined by the crystallized mass fraction, which is read in from the

file period.dat. Thus, the modes are excluded from the crystalline core in

this approach. This approach was found to be completely justified for g-mode

oscillations, and this code has been used to obtain almost all the pulsational

results in this thesis.

The other pulsation code, cjhxbndy4.f, is also a modification of cjhanro.f,

but with more extensive changes, as is shown by the table below. This code

is more self-consistent in that it solves the problem of pulsation for the entire

model, including the response of the crystallized core to the g-mode oscillations.

I accomplished this by recasting the problem as one with modified boundary

conditions at the solid/liquid interface. For a given frequency, I integrate the

oscillation equations outward from the core to the solid/liquid interface, thus

obtaining a relation between y1 and y2. This reduces the problem to the

case described in the above paragraph. Instead of imposing y1 = 0 at the

solid/liquid boundary, I impose the relation between y1 and y2 and allow the

code to continue the integration out to the photosphere. The summary of

the changes which I made to the different subroutines in cjhanro.f in order to

accomplish this is given in the following listing.
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rkfanro Reads in fracm. This is the crystallized mass fraction, which is given

by the third entry on the first line of period.dat.

init Reads in extra quantities mu (µ) and alambda (λ) from tape29.dat. These

are needed for pulsation of crystalline core in subroutine xbound.

xbound A new subroutine. Given y1 and a frequency, it returns the value of

y2 at the solid/fluid interface, which is the self-consistent result of letting

the crystal core respond to the perturbations.

load A new subroutine. It returns the central boundary conditions for oscil-

lations of the crystalline core for the two possible independent solutions.

xbderiv A new subroutine. It returns the value of the RHS for the equations

of oscillation of the crystalline core.

odeint A routine from Numerical Recipes, by Press et al. (1992). This routine

does a Runge-Kutta integration of the equations in the crystalline core

as specified in xbderiv. Also uses rkqs and rkck from Numerical Recipes.

bump Calls xbound, does full problem including discriminant calculation as

well as actually iterating to a solution. We do this since the complete

problem is now in the Cowling approximation, so we call bump both

times.

grind Also calls xbound. grind is called only once. This routine is called after

the solution has converged using bump, so that other auxiliary quantities

may be calculated (still in the Cowling approximation).
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In the following section, we give the source code for the three main

routines which calculate the eigenfunction in the crystalline solid: xbound,

xbderiv, and load.
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2.2. Source Code

c***************************************************************************

subroutine xbound(y1amp,y2amp)

implicit double precision(a-h,o-z)

parameter (nmax=50,nsav=200,vmax=50,EPS1=1.e-16)

double precision xp(nsav),yp(vmax,nsav),EPS1

common/misc/l,lhat,lindex,nsurf

common/dmisc/period,grav,pi,pi4,p43,eps,verg,eig,eigt,y3i,y3t,

1 amass

common/crys/mu(650),alambda(650),delta(650),beta(650),

1 rhos(650),rs(650),gs(650),xs(650),y5s(650),y2s(650),nxtal

common/path/dxsav,xp,yp

common/ipath/kmax,kount

common/ray/iray

common/saveval/y2ampold,eigtold,lold

common/solid/ysol(2,200),xisol(200),eigen(2,200),ekinsol(200),nsol

double precision mu

double precision l,lhat,lindex

double precision h1,hmin,y(nmax),y1(nmax),y2(nmax),

1 yp1(vmax,nsav),yp2(vmax,nsav),ypsum(vmax,nsav),ysum(nmax)

INTEGER nbad,nok

EXTERNAL xbderiv,rkqs

c check to see if frequency has changed enough to warrant recalculating

c y2amp

if ( abs((2.*pi/sqrt(eigt)-(2.*pi/sqrt(eigold)))).lt.200.

1 .and. l.eq.lold .and. iray.ne.1 ) then

y2amp=y2ampold

return

else

nvar=4

kmax=200

dxsav=0.2

x1=xs(1)

x2=xs(nxtal)

h1=(x2-x1)/100.

hmin=0.

c solve for first soln (z goes like r**(l-2))

call load(1,y)

call odeint(y,nvar,x1,x2,EPS1,h1,hmin,nok,nbad,xbderiv,rkqs)

do i=1,nvar

y1(i)=y(i)

do j=1,kount
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yp1(i,j)=yp(i,j)

enddo

enddo

c write(*,*) ’y1’,(y1(i),i=1,nvar)

c write(*,10) (xp(i),yp(1,i),yp(2,i),yp(3,i),yp(4,i),i=1,kount)

c solve for second soln (z goes like r**l)

call load(2,y)

call odeint(y,nvar,x1,x2,EPS1,h1,hmin,nok,nbad,xbderiv,rkqs)

do i=1,nvar

y2(i)=y(i)

do j=1,kount

yp2(i,j)=yp(i,j)

enddo

enddo

c add solutions to make y4=0 and y1=1 at the solid/fluid interface

den=y1(1)*y2(4)-y2(1)*y1(4)

a1=y2(4)/den

a4p=-y1(4)/den

do j=1,kount

do i=1,nvar

ypsum(i,j)=a1*yp1(i,j)+a4p*yp2(i,j)

enddo

enddo

do i=1,nvar

ysum(i)=a1*y1(i)+a4p*y2(i)

enddo

c write(*,*) ’x2 ysum’,x2,(ysum(i),i=1,nvar)

c write(*,10) (xp(i),ypsum(1,i),ypsum(2,i),ypsum(3,i),ypsum(4,i),

c 1 i=1,kount)

10 format(5(e14.7,x))

alamliq=alambda(nxtal+1)+(2./3.)*mu(nxtal+1)

c y2amp=y1amp*(1.-mu(1)*ysum(2)/(alamliq*y2s(nxtal)))

y2amp=y1amp*(ysum(1)-mu(1)*ysum(2)/(alamliq*y2s(nxtal)))

y2ampold=y2amp

eigold=eigt

lold=l

write(*,*) ’calculating solid/liquid boundary’

c store final solution in ysol and convert to Dziembowski variables

if (iray.eq.1) then

write(*,*) ’storing eigenfunction ysol’

nsol=kount

do i=1,kount



182

xx=xp(i)

call xlocate(xs,nsurf,xx,j)

if (j.gt.nxtal) then

write(*,*) ’went past crystallized layer: stop’

stop

endif

g1=gs(j)+(xx-xs(j))*(gs(j+1)-gs(j))/(xs(j+1)-xs(j))

r1=rs(j)+(xx-xs(j))*(rs(j+1)-rs(j))/(xs(j+1)-xs(j))

rho1=rhos(j)+(xx-xs(j))*(rhos(j+1)-rhos(j))/(xs(j+1)-xs(j))

y51= y5s(j)+(xx-xs(j))*( y5s(j+1)- y5s(j))/(xs(j+1)-xs(j))

xisol(i)=xp(i)

rfac=1./r1**lindex

ysol(1,i)=ypsum(1,i)*rfac

ysol(2,i)=(ypsum(3,i)*eig*r1/g1)*rfac

eigen(1,i)=r1*ysol(1,i)

eigen(2,i)=(g1*ysol(2,i)/eig)

ekinsol(i)=rho1*r1**3*y51*(eigen(1,i)**2+lhat*eigen(2,i)**2)/1.d+40

c ekinsol(i)=y51

c write(*,15) y5s(j),y5s(j+1),y51

15 format(3(e12.5,x))

enddo

endif

endif

write(*,*) ’l per y1liq y2liq’,l,2.*pi/sqrt(eigt),y1amp,y2amp

c stop

return

end
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c***************************************************************************

subroutine xbderiv(xx,yy,dyy)

implicit double precision(a-h,o-z)

parameter (nmax=10)

dimension yy(nmax),dyy(nmax)

common/misc/l,lhat,lindex,nsurf

common/dmisc/period,grav,pi,pi4,p43,eps,verg,eig,eigt,y3i,y3t,

1 amass

common/crys/mu(650),alambda(650),delta(650),beta(650),

1 rhos(650),rs(650),gs(650),xs(650),y5s(650),y2s(650),nxtal

double precision mu,mu1,lam1

double precision l,lhat,lindex

call xlocate(xs,nsurf,xx,j)

if (j.gt.nxtal) then

write(*,*) ’went past crystallized layer: stop’

stop

endif

rho1=rhos(j)+(xx-xs(j))*(rhos(j+1)-rhos(j))/(xs(j+1)-xs(j))

g1=gs(j)+(xx-xs(j))*(gs(j+1)-gs(j))/(xs(j+1)-xs(j))

r1=rs(j)+(xx-xs(j))*(rs(j+1)-rs(j))/(xs(j+1)-xs(j))

mu1=mu(j)+(xx-xs(j))*(mu(j+1)-mu(j))/(xs(j+1)-xs(j))

lam1=alambda(j)+(xx-xs(j))*(alambda(j+1)-alambda(j))/(xs(j+1)-xs(j))

delta1=delta(j)+(xx-xs(j))*(delta(j+1)-delta(j))/(xs(j+1)-xs(j))

beta1=beta(j)+(xx-xs(j))*(beta(j+1)-beta(j))/(xs(j+1)-xs(j))

y51=y5s(j)+(xx-xs(j))*(y5s(j+1)-y5s(j))/(xs(j+1)-xs(j))

c anorm1=alambda(nxtal)*y2s(nxtal)

c anorm2=mu(nxtal)/rs(nxtal)

anorm1=mu(1)

anorm2=mu(1)

dyy(1)=y51*(-(1.+2.*lam1*delta1-lindex)*yy(1)+delta1*yy(2)*anorm1+

1 lam1*lhat*delta1*yy(3))

dyy(2)=y51*( (-eigt*rho1*r1**2-4.*rho1*g1*r1 +

1 4.*pi*grav*rho1**2*r1**2+4.*mu1*beta1*delta1)*yy(1)/anorm1 -

2 (4.*mu1*delta1-lindex)*yy(2) +

3 lhat*(rho1*g1*r1-2.*mu1*beta1*delta1)*yy(3)/anorm1

4 + lhat*yy(4)*anorm2/anorm1 )

dyy(3)=y51*( -1.*yy(1)+lindex*yy(3)+(1./mu1)*yy(4)*anorm2 )

dyy(4)=y51*( (rho1*g1*r1-2.*mu1*beta1*delta1)*yy(1)/anorm2 -

1 lam1*delta1*yy(2)*anorm1/anorm2 +

2 (-rho1*eigt*r1**2+2.*mu1*delta1*(lam1*(2.*lhat-1.) +

3 2.*mu1*(lhat-1.)))*yy(3)/anorm2 + (lindex-3.)*yy(4) )

c write(*,10) rho1*g1*r1,mu1*beta1*delta1,lam1*delta1,anorm1,anorm2
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10 format(5(e12.5,x))

return

end
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c***************************************************************************

subroutine load(iflag,y)

implicit double precision(a-h,o-z)

double precision mu,y(4)

common/crys/mu(650),alambda(650),delta(650),beta(650),

1 rhos(650),rs(650),gs(650),xs(650),y5s(650),y2s(650),nxtal

common/misc/l,lhat,lindex,nsurf

double precision l,lhat,lindex,muc,lamc

muc=mu(1)

lamc=alambda(1)

if (iflag.eq.1) then

y(1)=1.0

c y(2)=2.*(-1. + l)*muc

y(2)=2.*(-1. + l)

y(3)=1./l

c y(4)=2.*(-1. + l)*muc/l

y(4)=2.*(-1. + l)/l

elseif (iflag.eq.2) then

c y(1)=(1. + l)*(l*lamc - 2.*muc + l*muc)/

c 1 (2.*muc*(2.*l*lamc + l**2*lamc - muc + 2.*l*muc + l**2*muc))

y(1)=(1. + l)*(l*lamc - 2.*muc + l*muc)/

1 (2.*(2.*l*lamc + l**2*lamc - muc + 2.*l*muc + l**2*muc))

y(2)=(1. + l)*(-3*lamc - l*lamc + l**2*lamc - 2.*muc - l*muc

1 + l**2*muc)/(2.*l*lamc + l**2*lamc - muc + 2.*l*muc + l**2*muc)

c y(3)=(3*lamc + l*lamc + 5*muc + l*muc)/

c 1 (2.*muc*(2.*l*lamc + l**2*lamc - muc + 2.*l*muc + l**2*muc))

y(3)=(3*lamc + l*lamc + 5*muc + l*muc)/

1 (2.*(2.*l*lamc + l**2*lamc - muc + 2.*l*muc + l**2*muc))

y(4)=1.

else

write(*,*) ’unable to set inner BCs in load’

stop

endif

return

end
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3. Modifications to WDEC—Paul’s Version

3.1. Code Changes

The modifications to Paul’s version of the WDEC are quite minor. The only

notable change is the added ability to converge to a pre-specified set of tem-

peratures.

This modified version of WDEC is called wdxdfit.f and uses the control

file temperatures.con. This file contains a list of temperatures (one on a line)

for which the code is supposed to produce models. An example of this file is

the following:

13400.0

13200.0

13000.0

12800.0

12600.0

12400.0

Using this file, WDEC will attempt to produce 6 models, with the last model

having Teff = 12400 K.

There are two instances in which this is a desirable capability to have.

First, if one wants to produce a model at a given temperature (to match spec-

troscopic determinations, say), then this is a convenience. Second, if one wants

to produce a grid of models such that “nearby” models differ in only one of

the parameters, then it is necessary to hold all the other parameters constant.

For instance, if we wish to explore the effect of M? and MH on the pulsations,
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but wish to fix the temperature at Teff = 11800 K, then we also need this ca-

pability. In addition, it is easier to produce an evenly spaced grid of models in

temperature.

It is not always possible to converge to the desired temperature if the

model is badly off the equation of state near a particular temperature. When

this happens, there may not be a linear relation between small changes in the

timestep ∆t and small changes in Teff . If this is the case, then wdxdfit.f may

become trapped in a periodic trek through the space of ∆t and Teff and never

converge to the desired solution. In the present version of this code, the only

way out of this is to type ^C.

3.2. Extensions to the Envelope EOS’s

Since most of the models used in the pulsational part of this thesis are designed

to apply to high mass DAV’s, the conditions in the envelopes of our models

were in general at higher densities than for 0.6 M¯ models. As a result, we

were closer to the edges of our equations of state, and in some cases we were

off them.

In order to calculate g-mode periods, the most important quantity is the

Brunt-Väisälä frequency. Fortunately, the Brunt-Väisälä frequency is such a

sensitive function of the equilibrium quantities that any irregularities in it give

an instant diagnostic clue as to what is going on. By examining the Brunt-

Väisälä frequency, we found that we were off the envelope EOS (EEOS) for

both C and He when we assumed thick He layers (i.e., 10−3) for our 1.1 M¯

models. In addition, we found entries in the EOS for both He and H for which
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the thermodynamic quantities χρ and χT were artificially set to zero, which

effectively rendered these grid points useless.

In order to treat both these problems, we used the Lamb interior EOS to

extend and correct the envelope tables. This is justified since all the changes

and additions were to the high density edge of the envelope EOS’s, so the

approximations assumed by the interior EOS should be valid there.

In Figure E.1, we plot the various EEOS regions, as well as the inte-

rior EOS region for oxygen, denoted by IEOSO. The solid histogram lines in

the first three panels, labelled EEOSH, EEOSHE, and EEOSC, correspond to

the limiting region in which the envelope EOS is defined for H, He, and C,

respectively. The dashed line corresponds to the region in which the EOS’s

were defined before our extensions. The fourth panel, labeled IEOSO, gives

the region in which the interior EOS of O is defined. In all the panels, the

curve which is drawn shows the points covered by a typical 1.1 M¯ model with

Teff ∼ 12, 000 K; when this curve is inside the 0.99 mass point in the model it

is drawn as a dotted line, and when it is outside this point it is drawn as a solid

line. Thus, we see that if we choose the core/envelope boundary to be at this

mass point, then we would have been unable to treat the envelope properly for

C, HE, and even H, if these elements were present at the base of the envelope.

In the following section, we give the source code for the program with

which we made the extensions, eos extend.f. It is a front end for the Lamb

EOS code which reads in the old EOS tables from standard input and writes

the extended tables to standard output. Additional documentation is given at

the top of the source code itself.
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Fig. E.1.— The regions spanned by the various envelope and interior equations

of state.
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3.3. Source Code

c***********************************************************************

c Extend the envelope equations of state for hydrogen, helium, and

c carbon using the Lamb ieos code. These extensions are to the high

c density edges of the eos’s, so the Lamb code should be valid there.

c The program reads in the files (EEOSH.orig, EEOSHE.orig, EEOSC.orig)

c from standard input and writes the extended eos to standard output.

c je=1,2,3 for H,He,C, respectively. rhoadd is the orders of magnitude

c in extension to make to the eos’s, and tthresh is the log T above

c which to make this extensions. Nothing is done to the part of the

c tables with log T < tthresh. The Lamb ieos code is included as

c the subroutine ieos(). In addition, this code replaces lines in the

c eos which had \Chi_T and \Chi_rho = 0; these quantities are necessary

c for the healthy functioning of wdxdl and wdxdfit. This was mainly

c necessary at the high density edges of the eos’s or in the regions where

c the eos’s had already been extended once before, at high temperatures.

c***********************************************************************

program eos_extend

implicit double precision(a-h,o-z)

double precision a(100,8)

tthresh=6.0

drho=1./3.

c rhoadd=3.0

rhoadd=2.0

nadd=nint( rhoadd/drho +1.)

c je=1 for hydrogen je=2 for helium and je=3 for carbon

je=1

c je=2

c je=3

read (*,*) nisot

write(*,5) nisot

5 format(i5)

do i=1,nisot

read (*,*) nisobar

newiso=nisobar+nadd

c write(*,5) newiso

do j=1,nisobar

read(*,*) (a(j,k),k=1,8)

c write(*,10) (a(j,k),k=1,8)

enddo

t=a(nisobar,1)
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if (t.gt.tthresh) then

write(*,5) newiso

do j=1,nisobar

if (dabs(a(j,4)).lt.1.d-06) then

c write(*,*) ’Adding line’

call testeos(a(j,1),a(j,2),a(j,2),drho,je)

else

write(*,10) (a(j,k),k=1,8)

endif

enddo

rhomin=a(nisobar,2)+drho

c rhomin=a(nisobar,2)

rhomax=rhomin+rhoadd

c write(*,*) ’Adding the following’,nadd,’ lines:’

call testeos(t,rhomin,rhomax,drho,je)

else

write(*,5) nisobar

do j=1,nisobar

if (dabs(a(j,4)).lt.1.d-06) then

c write(*,*) ’Adding line’

call testeos(a(j,1),a(j,2),a(j,2),drho,je)

else

write(*,10) (a(j,k),k=1,8)

endif

enddo

endif

c write(*,10) (a(nisobar,k),k=1,8)

10 format(8(x,1pe12.5))

enddo

stop

end
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c**************************************************************************

subroutine testeos(t,rhomin,rhomax,drho,je)

implicit double precision(a-h,o-z)

common/debug/debug

common/vars/x,efermi,beta,eta0,theta,gamma,phi,rho0

common/once/once

common/temp/temp(2,12)

logical debug,once

debug = .true.

once = .false.

ixflag = 0

fnat = log10(exp(1.0))

ixtal=1

do d=rhomin,rhomax+0.001,drho

call ieos(t,d,ixflag,je)

p =temp(ixtal,1)

pd =temp(ixtal,4)

pt =temp(ixtal,5)

u = temp(ixtal,6)

ud = temp(ixtal,7)

ut = temp(ixtal,8)

e = temp(ixtal,9)

ed = temp(ixtal,10)

et = temp(ixtal,11)

eta = temp(ixtal,12)

c cv = et*10**e*fnat

cv = et*10**e

chirho=pd

chit=pt

vt=chit/chirho

gamma3=1+chit*10**(p-d-t)/cv

gamma1=chirho+chit*(gamma3-1)

datg=(gamma3-1.)/gamma1

write(*,201)t,d,p,u,chit,chirho,datg,eta

enddo

c write(*,200) (temp(ixtal,i),i=1,12)

200 format(2(x,f4.2),11(x,1pe12.5),x,i2)

201 format(11(x1pe12.5),x,i2)

c201 format(2(x,f4.2),11(x,1pe12.5),x,i2)

end
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