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ABSTRACT
We demonstrate that there is an inherent symmetry in the way high-overtone stellar pulsations
sample the core and the envelope, which can potentially lead to an ambiguity in the astero-
seismologically derived locations of internal structures. We provide an intuitive example of
the source of this symmetry by analogy with a vibrating string. For the stellar case, we focus
on the white dwarf stars, establishing the practical consequences for high-order white dwarf
pulsations both analytically and numerically. In addition, we verify the effect empirically by
cross-fitting two different structural models, and we discuss the consequences that this approx-
imate symmetry may have for past and present asteroseismological fits of the pulsating DBV,
GD 358. Finally, we show how the signatures of composition transition zones that are brought
about by physically distinct processes may be used to help alleviate this potential ambiguity
in our asteroseismological interpretation of the pulsation frequencies observed in white dwarf
stars.

Key words: methods: analytical – stars: individual: GD 358 – stars: interiors – stars: oscillations
– white dwarfs.

1 A S T RO P H Y S I C A L C O N T E X T

Asteroseismology is the study of the internal structure of stars
through their pulsation frequencies. The distribution of the observed
pulsation periods is theoretically determined entirely by the run of
two fundamental frequencies in stellar models: the buoyancy, or
Brunt–Väisälä frequency and the acoustic, or Lamb, frequency. For
non-radial g-mode pulsations in white dwarfs – the only modes so
far observed in these stars – the buoyancy frequency is the dominant
physical quantity that determines the pulsation periods, reflecting
the internal thermal and mechanical structure of the star. A consid-
erable body of work by numerous investigators has focussed on the
signature that core properties, such as the crystallized mass fraction
and the C/O abundance distributions, and envelope properties, such
as diffusion profiles and surface layer masses, have on the pulsation
frequencies. Unambiguous interpretation of the distribution of pe-
riods is hindered by the difficulty of disentangling the signatures of
structures in the deep core from those in the envelope.

It is well known both analytically and numerically that the separa-
tion between the periods of consecutive radial overtones approaches
a constant value for high-overtone modes, so one might think that
these periods do not actually contain information about the internal
structure of the star. The resolution of this apparent paradox is that
in general there are sharp features in the Brunt–Väisälä frequency
for which the modes may not be considered to be in the asymptotic
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limit, and the presence of these features perturbs the periods so that
the period spacings are no longer uniform, an effect which is com-
monly referred to as ‘mode trapping’. Thus, these deviations from
uniform period spacing contain information about sharp features in
the Brunt–Väisälä frequency, and can be used to discern internal
structure in the star, such as the locations of composition transition
zones. To date, almost all analyses of observed mode trapping in
white dwarf pulsators have focussed on determining the thicknesses
of the various chemically pure envelope layers.

In particular, initial estimates of the He layer mass of the DBV
GD 358 yielded 10−5.7 M� (Bradley & Winget 1994), while more re-
cent analyses (Metcalfe, Nather & Winget 2000; Metcalfe, Winget
& Charbonneau 2001) indicated a globally optimal fit with MHe =
10−2.7 M� and a changing C/O profile at Mr ∼ 0.5–0.9 M�. How-
ever, the Metcalfe et al. analyses still found a local minimum in
parameter space near MHe ∼ 10−6 M�. Most recently, Fontaine &
Brassard (2002) calculated a grid of carbon core models that in-
cluded a double-layered envelope structure, a result similar to the
earlier time-dependent diffusion calculations of Dehner & Kawaler
(1995). They were able to fit the observed periods of GD 358 down
to a level of precision comparable to the fit of Metcalfe et al. (2001),
without including any structure in the core. Their model had com-
position gradients at two locations in the envelope, near 10−3 and
10−6 M�, and a chemically uniform core.

In this paper, we show that there is an inherent symmetry in the
way in which high-overtone pulsations sample the cores and en-
velopes of the models, with the result that it may be possible to
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reconcile the differences between the fits mentioned above. Specif-
ically, by expanding on the work of Montgomery (2003), we show
that a sharp feature in the Brunt–Väisälä frequency in the core of the
models can qualitatively produce the same mode trapping patterns
as a corresponding feature in the Brunt–Väisälä frequency in the en-
velope, leading to a potential ambiguity in the interpretation of the
observed periods. In the following sections, we demonstrate how
this core/envelope mapping works for both DBV and DAV mod-
els, and we use it to suggest a re-interpretation of the previous and
current fits for GD 358. As a further example, we show the results
of cross-fitting between two structurally dissimilar models. Finally,
we show what considerations allow this ‘symmetry’ to be broken.

2 S I M P L E A NA L O G Y: T H E
V I B R AT I N G S T R I N G

In order to better illustrate the problem of g-mode oscillations in
a white dwarf, we first imagine doing asteroseismology of a far
simpler object, the vibrating string. As it turns out, all of the major
results can be carried over to the astrophysical case.

2.1 The uniform string

If we take a uniform string with a constant ‘sound speed’ c, and
assume a sinusoidal time-dependence, then we obtain the following
eigenvalue equation:

∂2ψ

∂x2
+ ω2

c2
ψ = 0, ψ(0) = 0 = ψ(L), (1)

where ψ(x) is the spatial part of the eigenfunction, ω is the eigen-
frequency, and L is the length of the string. The solution is given
by

ψ(x) = A sin(kn x), kn = nπ

L
, ωn = knc, (2)

with n = 1, 2, 3 . . . . Thus, the spectrum of eigenfrequencies {ωn}
is equally spaced. If we now make a small position-dependent per-
turbation to c, calling it δc(x), then the shift in frequencies may be
calculated from a variational principle, yielding

δωn

ωn
= 2

L

∫ L

0

dx

[
δc(x)

c

]
sin2(kn x). (3)

Finally, we may ask what the perturbation to the eigenfrequencies
is for a new δc̃(x) which is the reflection of δc(x) about the midpoint
of the string, i.e. δc̃(x) = δc(x̃), where x̃ ≡ L − x :

δωn

ωn
= 2

L

∫ L

0

dx

[
δc(x̃)

c

]
sin2(kn x)

= 2

L

∫ L

0

dx̃

[
δc(x̃)

c

]
sin2(kn L − kn x̃)

= 2

L

∫ L

0

dx̃

[
δc(x̃)

c

]
sin2(kn x̃). (4)

From comparison of equations (3) and (4), we see that δc(x) and
δc(x̃) produce identical sets of perturbed frequencies. Thus, from
an asteroseismological standpoint, the two perturbations are degen-
erate and cannot be distinguished from one another. This is hardly
surprising since we know that the uniform string is symmetric with
respect to reflection about its midpoint, i.e. it doesn’t matter which
end of the string we call x = 0, and how we choose it had better have
no effect on the observed frequencies. Thus, the above symmetry
must be present even if the perturbation δc(x) is not small.

2.2 The non-uniform string

For the case when c = c(x) is a function of x, equation (1) is still
separable, but the x-dependence is no longer sinusoidal. However,
if we consider only modes with relatively high overtone number
(n � 1), then we may use the JWKB approximation to obtain

ψn(x) = A
1√

kn(x)
sin[φn(x)], kn(x) = ωn

c(x)
, (5)

where

ωn = nπ∫ L

0
dxc−1(x)

, φn(x) ≡ nπ

∫ x

0
dx ′c−1(x ′)∫ L

0
dx ′c−1(x ′)

, (6)

with n = 1, 2, 3, . . . . As before, a small perturbation to the sound
speed, δc, may be related to a change in the eigenfrequencies by

δωn

ωn
= C

∫ L

0

dxc−1(x)

[
δc(x)

c(x)

]
sin2[φn(x)]. (7)

where C = 2/
∫ L

0
dxc−1(x). As the string is not uniform, it no

longer possesses reflection symmetry about its midpoint. However,
in analogy with the uniform case, we consider a reflection coordinate
x̃ defined by

φn(x̃) ≡ φn(L) − φn(x)

= nπ − φn(x). (8)

As before, if we consider a ‘reflected’ perturbation δc̃(x)/c̃(x) =
δc(x̃)/c(x̃), then from equation (8) we have dxc−1(x) = −dx̃c−1(x̃),
so we find that

δωn

ωn
= C

∫ L

0

dxc−1(x)

[
δc(x̃)

c(x̃)

]
sin2[φn(x)]

= C

∫ L

0

dx̃c−1(x̃)

[
δc(x̃)

c(x̃)

]
sin2[nπ − φn(x̃)]

= C

∫ L

0

dx̃c−1(x̃)

[
δc(x̃)

c(x̃)

]
sin2[φn(x̃)], (9)

which is identical to equation (7) if x̃ is replaced by x. Thus, the
reflected perturbation produces the same set of frequency pertur-
bations as did the original perturbation, so there again exists an
ambiguity in inferring the structure of the string from its eigenfre-
quencies; this is illustrated in Fig. 1.

Finally, we note that this symmetry bears a close resemblance
to the phenomenon of frequency aliasing in time-series analysis. If
we consider the frequency perturbation to be a continuous function
of the overtone number, such as the solid line in the lower panel
of Fig. 1, then the fact that the spectrum of eigenfrequencies is
discrete means that this curve is sampled only at an evenly spaced
set of points. Now if the curve in the lower panel of Fig. 1 represents
the frequency changes due to a perturbation in δc/c at x/L = 0.30,
then the curve corresponding to the symmetric perturbation at x/L
≈ 0.87 would be a highly oscillatory curve passing through the same
set of integer values of n. However, because the eigenmodes sample
this oscillatory curve only at integer values of n, this high-frequency
signal is ‘aliased’ back to lower frequencies, i.e. the solid curve in
the lower panel of Fig. 1. In this way, a perturbation δc/c at the point
x̃ can, through aliasing, appear as if it originates at the point x.
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Figure 1. The frequency perturbations due to a bump in the sound speed
for the non-uniform string: (upper panel) two perturbations which are mirror
images of one another in the sense given by equation (8) (solid and dashed
curves, respectively), both of which produce the same set of frequency per-
turbations (lower panel), shown as a function of overtone number n. The
vertical dotted line in the top panel shows the the geometric location of the
‘centre’ of the string with respect to this reflection.

3 W H I T E DWA R F C O R E / E N V E L O P E
S Y M M E T RY

3.1 Analytical approach

We would now like to apply the ideas of the previous section to
the pulsating white dwarf stars. We believe this should be possible
as the adiabatic equations of oscillation of a spherically symmetric
stellar model (in the Cowling approximation) can be reduced to a
second-order differential equation, i.e. the g-mode pulsations can
be reduced to a form which mimics that of the vibrating string. In
particular, the oscillation equation may be written as (Deubner &
Gough 1984; Gough 1993)

d2

dr 2
ψ(r ) + K 2ψ(r ) = 0, (10)

where

K 2 ≡ ω2 − ω2
c

c2
− L2

r 2

(
1 − N 2

ω2

)
, (11)

N is the Brunt–Väisälä frequency, L2 ≡ 
(
 + 1), c is the sound
speed, and ωc is the acoustic cut-off frequency, which is usually
negligible except near the stellar surface. For high overtone g-modes,
we have K ∼ LN/ω r , and applying the JWKB approximation we
find (Gough 1993)

ψk(r ) = A
1√

Kk(r )
sin

[
φk(r ) + π

4

]
, (12)

with

ωk = L

(k − 1/2) π

∫ r2

r1

dr
N

r
, (13)

φk(r ) ≡
(

k − 1

2

)
π

∫ r

r1
dr ′|N |/r ′∫ r2

r1
dr ′|N |/r ′

, k = 1, 2, 3, . . . , (14)

where r1 and r2 are the inner and outer turning points of the mode,
respectively, and where we have switched from n to k to denote the
radial overtone number. The major difference between this case and
that of the string is that for the string the turning points were the
same for every mode (i.e. the fixed endpoints), whereas for g-modes,
the inner and outer turning points of the modes are weak functions
of the mode frequency, so they are different for every mode. Thus,
the reflection symmetry may not be as exact as it was for the string
problem.

If we consider a perturbation to the Brunt–Väisälä frequency
δN/N , and we assume that the inner and outer turning points are
fixed, then the problem is very similar to that of the non-uniform
string, with the perturbations to the eigenfrequencies given by

δωk

ωk
= 2∫ r2

r1
dr N/r

∫ r2

r1

dr

(
δN

N

)
N

r
sin2

[
φk(r ) + π

4

]
. (15)

Similarly, the approximate reflection mapping between the points r
and r̃ is given by

φk(r ) = φk(r2) − φk(r̃ )

=
(

k − 1

2

)
π − φk(r̃ ), (16)

which may be explicitly written as∫ r

r1

dr
|N |
r

=
∫ r2

r̃

dr
|N |
r

. (17)

Essentially, the above equation says that points which are the same
number of ‘wavelengths’ (nodes in the radial eigenfunction) from
the upper and lower turning points are reflections of one another.

We remark that if we take r 1 = 0 and r 2 = R� in equation (12),
then φk(r ) becomes a monotonic increasing function between the
centre and the surface, and could itself be used as a radial coordinate.
In particular, if we define

�(r ) ≡
∫ r

0
dr |N |/r∫ R�

0
dr |N |/r

, (18)

then �(0) = 0 and �(R�) = 1; because � is directly linked to
the Brunt–Väisälä frequency, we will call it the ‘normalized buoy-
ancy radius’. The radial coordinate � has the advantage that it
makes the problem look quite similar to that of the uniform string:
the ‘reflection mapping’ between the points r and r̃ is given by
�(r ) = 1 − �(r̃ ), with the reflection point (‘centre of the string’)
having � = 1/2. In addition, it can be shown that in the JWKB
approximation the kinetic energy density per unit � is constant.
Because this approximation is valid everywhere except at sharp fea-
tures, such as composition transition zones, a change in the kinetic
energy density (as well as the ‘weight function’) plotted as a func-
tion of � gives us a clear indication of the amount of mode trapping
that a mode experiences. We show examples of this in Section 5.

For completeness, we mention that the analysis of the preceding
paragraphs may also be carried out for high-order p modes. In this
case, we have K ∼ ω/c, with � given by

�(r ) ≡
∫ r

r1
drc−1∫ r2

r1
drc−1

. (19)

As � is a function of the sound speed, c, we refer to it as the
‘normalized acoustic radius’. The reflection mapping is unchanged
from the previous result, namely �(r ) = 1 − �(r̃ ). If a range of 


values are observed, as is the case for the Sun, then this symmetry
can be broken due to the fact that the lower turning point, r1, is a
function of 
.
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Figure 2. Upper panel: the change in mode periods as a function of overtone
number k due to a perturbation to the Brunt–Väisälä frequency at Mr =
0.5622M� (filled circles) and at a depth of 10−5.331 M� (open circles). Lower
panel: residuals of the fit as a function of the position of the envelope bump
in which the position of the core bump is kept fixed.

3.2 Full numerical treatment

In order to investigate this core/envelope symmetry in detail, we use
a fiducial DB white dwarf model with the parameters M� = 0.6 M,
T eff = 24 000 K , MHe = 10−6 M�, and we consider pulsation modes
having 
 = 1 with periods between 400 and 900 s. We choose the
diffusion exponents for the C/He transition zone so as to make this
transition zone as smooth as possible. The reason for this is that we
wish the background model to be smooth so that the only bumps in
the Brunt–Väisälä frequency are the ones which we put in by hand.

In Fig. 2, we show the change in mode periods caused by placing
a bump in the Brunt–Väisälä frequency at a point in the core as well
as those produced by a bump in the envelope: the filled circles in
the upper panel correspond to a core bump at Mr/M� = 0.5622,
while the open circles are for a bump in the envelope at log (1 −
Mr/M�) = −5.331. We see that the shapes of the perturbations are
qualitatively the same, and that both sets of perturbations are well
fitted by the same asymptotic formula (solid curve). In the lower
panel, we show how the residuals change as we vary the position of
the (induced) envelope bump in order to try to reproduce the period
changes due to the (intrinsic) core bump, i.e. we move the envelope
bump through a range of radii in order to examine whether we have
found a global best fit. Clearly, not only is there one unambiguous
global minimum which is an order of magnitude smaller than the
other local minima, the residuals are a smooth function of the bump
position, so we are justified in using a non-linear fitting algorithm
in order to find the local (and global) minimum at log (1 − Mr/M�)
= −5.331.

Using the above procedure, we can map out the corresponding
pairs of core/envelope points in our equilibrium model, obtaining
the solid curve in Fig. 3 (the dashed line is the result of using the
analytical relation given by equation 17 with r 1 = 0 and r 2 = R�).
Thus, we see that a feature in the core at Mr/M� ∼ 0.5 can mimic
a feature in the envelope at log (1 − Mr/M�) ∼ −5.5. This is a
very significant result because we a priori expect there to be both
envelope bumps due to chemical diffusion as well as core bumps due
to the prior nuclear burning history of the white dwarf progenitor.

Figure 3. The mapping between points in the core (x-axis) and those in
the envelope (y-axis) which produce similar mode trapping for moderate to
high overtone modes. The solid line is the result of direct numerical fitting
and the dashed line is the analytical prediction of equation (17), in which the
inner and outer turning points, r1 and r2, have been taken to be the centre
and the surface, respectively.

Figure 4. Theoretical internal oxygen profiles from Metcalfe, Salaris &
Winget (2002) for a 0.65-M white dwarf model produced with standard
semiconvective mixing (solid) and with complete mixing in the overshooting
region (dashed) during central helium burning. The two shaded areas show
the regions of the core where perturbations to the Brunt–Väisälä frequency
can mimic perturbations in the envelope at values of log q corresponding to
those derived by Fontaine & Brassard (2002) for GD 358.

For instance, in Fig. 4 we show evolutionary C/O profiles (Salaris
et al. 1997) which result from assuming either standard semiconvec-
tive mixing (solid line) or complete mixing in the overshoot region
(dashed line). Since the Brunt–Väisälä frequency depends on the ra-
dial derivative of these profiles, the regions of large slope at Mr/M�

∼ 0.5 and Mr/M� ∼ 0.98 will produce bumps in the Brunt–Väisälä
frequency at these points. For the shaded regions in this figure, we
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have taken the quoted ranges of the He transition zones in the en-
velope of the model of Fontaine & Brassard (2002) and used the
reflection mapping of Fig. 3 to indicate which regions in the core
correspond to these envelope ranges. Almost eerily, these ranges
correspond quite closely to those in which we would expect to see
structure in the core. Thus, the possibility exists that Fontaine &
Brassard are fitting ‘real’ structure in the core with assumed struc-
ture in the envelope. The reverse is also possible, of course, and at
the very least the potential exists for the two signatures to become
entangled with one another.

3.3 DA models

The above analysis can be directly applied to DAV models. For our
fiducial model, we take M� = 0.60 M, T eff = 12 000 K, MHe =
10−3 M� and MH = 10−6 M�. In order to make our background model
as smooth as possible, we ignore the Ledoux term in the computation
of the Brunt–Väisälä frequency; this reduces but does not eliminate
the bumps due to the chemical transition zones. Finally, because
these stars are cooler and therefore more degenerate, we consider
longer period 
 = 1 modes, of between 800 and 1300 s.

For the DAVs, we find a couple of surprises. First, as shown in
Fig. 5, the mapping is no longer single-valued: there is more than
one point in the envelope which is approximately mapped to a point
in the core, and vice versa. In fact, there appear to be at least two and
possibly more families of mappings which have approximately the
same residuals. This is due to the fact that our background model
already has two ‘bumps’ in it corresponding to the C/He and He/H
transition zones, which our test bump is interacting with.

Secondly, as shown in Fig. 6, the core/envelope mapping is
weighted much more toward the envelope than it is for the DBV
models, i.e. a given point in the core is mapped to a point farther
out in the envelope than it is in the DBV models. Physically, this is
because the DAV model is cooler and has a more degenerate core,
and therefore N2 is smaller in its core. Thus, one has to move farther
out from the centre in order to accumulate a given amount of phase
in the sense of equations (17) or (18). The implications of this could

21

Figure 5. The same as Fig. 2, but for a DAV model. From the bottom
panel, we see that the local minimum near ∼ −8.2 (arrow 2) has residuals
nearly as small as those at the minimum near ∼ −7.2 (arrow 1), and that the
residuals near ∼ −6.4 are also fairly small. Thus, for all practical purposes,
the core/envelope mapping is no longer single-valued.

2

1

DAV

DBV

Figure 6. The same as Fig. 3, but for a DAV model. The dashed curve is the
analytical result for the fiducial DAV model, and the two solid lines labelled
1 and 2 are the core/envelope mappings corresponding to minima 1 and 2 in
Fig. 5. For reference, the dotted curve is the analytical result for our fiducial
DBV model.

be important, because a changing C/O profile in the range 0.5–0.9
M� maps to an envelope point of 10−10–10−8. Thus, such a C/O
profile cannot mimic a hydrogen layer mass greater than ∼10−6 M�,
so the ambiguity in interpreting the origin of perturbations to the
periods may be alleviated in the DAVs.

Finally, we wish to mention that at least one of the DAVs, BPM
37093, is theoretically predicted to have a partially crystallized core.
In terms of seismology, the main effect of such a core would be to
exclude the pulsations from the crystallized region (Montgomery &
Winget 1999a,b), effectively making the lower turning point, r1, the
upper boundary of the crystallized core. Thus, instead of running
from 0 to 1, the horizontal axis in Fig. 6 would run from MCr/M�,
to 1, where MCr/M� is the crystallized mass fraction. This would
tend to push the symmetry point for a given location in the core
farther out into the envelope. Also, the higher mass of BPM means
that its core will be more degenerate than that of the other DAVs,
which will also push its symmetry mapping yet farther out into the
envelope.

4 C RO S S - F I T T I N G T WO
S T RU C T U R A L M O D E L S

Empirical evidence that this symmetry in the white dwarf models
may lead to some ambiguity in the interpretation of model-fits from
various descriptions of the stellar interior was recently published
in Fontaine & Brassard (2002) and Metcalfe (2003). To investigate
the effects of this symmetry more directly, we performed several
cross-fitting experiments with two different structural models – at-
tempting to match the calculated pulsation periods from one model
by using a structurally distinct model to do the fitting. In partic-
ular, we attempted to fit the carbon core double-layered envelope
model periods from table 1 of Fontaine & Brassard (2002) using
the five-parameter model of Metcalfe et al. (2001), which includes
a single-layered envelope and an adjustable C/O core; we were able
to find a match with rms period residuals of only σ P = 1.26 s (the
optimal model parameters were identical to those found by Metcalfe
(2003) for GD 358).
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We may also use Fontaine & Brassard’s published results to turn
the question around and see what goodness of fit they would obtain
by attempting to fit the periods of our model. An upper limit on the
rms residuals that may arise from such a comparison can be obtained
by comparing the periods of the two optimal models for GD 358
from Metcalfe (2003) and Fontaine & Brassard (2002), leading to
σ P � 1.26 s. It is important to note that the double-layered envelope
models may be able to match the periods from the adjustable C/O
models even better than this with slightly different model parameters
– a possibility that would demonstrate a core/envelope symmetry
even more clearly.

Given the discussion of the previous sections, the results from
the cross-fitting are not too surprising, as we are in essence fitting
structure in the envelope of the Fontaine & Brassard model using
structure in the core of our model located at the appropriate reflection
point, and vice versa. The level of the residuals from our model-to-
model comparison tells us directly what we have suspected for some
time: the model-to-observation residuals for GD 358 (σ P ∼ 1 s) are
dominated by structural uncertainties in the current generation of
models, regardless of which type of model is used to do the fitting.
This does not necessarily mean that the conclusions based on fitting
from either of these models should be thrown out; it simply means
that neither model is a complete description of the actual white dwarf
stars, a statement that can hardly be considered controversial.

We can attempt to determine which of the two structural descrip-
tions is closer to reality (or better describes the interior structure as
sampled by the pulsations) by comparing the absolute level of the
residuals for GD 358 from each model, corrected for the number of
free parameters. The four-parameter model of Fontaine & Brassard
(2002) leads to σ P = 1.30 s when compared to the periods observed
in GD 358. The Bayes Information Criterion (Koen & Laney 2000)
would lead us to expect the residuals of a five-parameter fit to be
reduced to 1.17 s just from the addition of an extra parameter. The
five-parameter model of Metcalfe (2003) does much better than this,
with residuals of σ P = 1.05 s (an improvement equivalent to 4σ obs)
– suggesting that the internal C/O profile may be the more impor-
tant of the two possible structures. Based on the results of our own
experiments with double-layered envelope models (Metcalfe et al.,
in preparation) this possibility may be even more likely.

5 ‘ B R E A K I N G ’ T H E S Y M M E T RY

In the previous sections, we have demonstrated that a core/envelope
symmetry exists for high-overtone modes. Fortunately, this sym-
metry is approximate, and there are many ways in which it may
be lifted or broken. For example, many of the DBVs appear to be
higher overtone pulsators (k ∼ 10), although this is not necessarily
true for all of the observed modes in a given star, nor is it true of ev-
ery member of the class. The DAVs as a class are not high-overtone
pulsators, so this symmetry will be less of an issue for them. In
addition, as shown in Fig. 6, the core/envelope mapping for DAV
models is weighted more towards the envelope, so that the reflec-
tion point for many points in the core is in a region of the envelope
where it may not overlap with the expected position of the chemical
transition zones.

In addition, the core/envelope symmetry can be broken if we
make additional assumptions. For instance, due to the different
physical processes which produce them, the generic shape expected
for the C/O profile in the core will be different from the expected
shape of the C/He profile in the envelope. Using this information
(parametrized in some form, for instance), we should be able to dis-
cern a core feature from an envelope feature. We show an example

Figure 7. The bumps in the Brunt–Väisälä frequency (middle panel) which
are produced by given chemical transition zones (upper panel), and the mirror
image of these bumps under the reflection mapping (lower panel). We have
taken the buoyancy radius � to be the radial variable; along the top axis of
the upper panel we indicate the corresponding values of log (1 − Mr/M�).

of this in Fig. 7, in which we see that the reflected bumps (lower
panel) do indeed have different amplitudes and shapes from the ac-
tual bumps (middle panel) in the Brunt–Väisälä frequency [note that
we have used the buoyancy radius, �, as defined in equation (16),
as our radial coordinate; along the top axis we use the more familiar
log (1 − Mr/M�)].

The physical inputs used to generate Fig. 7 include a Salaris-like
C/O profile (e.g. Salaris et al. 1997) and a two-tiered C/He Dehner-
like envelope profile (Dehner & Kawaler 1995). Furthermore, we
have defined a ‘bump’, δN/N , as the fractional difference between
the Brunt–Väisälä frequency calculated both with and without the
Ledoux term (this term explicitly takes account of the effect which
composition changes have on the value of N2). While this yields
reasonable results for the inner transition zones, for the outer C/He
transition zone near log (1 − Mr/M�) ∼ −6 this prescription would
greatly overestimate the importance of this bump. Instead, for this
case we have taken δN/N to be the fractional difference of the ac-
tual Brunt–Väisälä frequency and a third-order polynomial which
smoothly joins on to the Brunt–Väisälä frequency on each side of
the transition zone. With these definitions, we see that the inner
C/O transition zone should produce the most dominant mode trap-
ping feature, and that the inner C/He transition zone should produce
the next most important feature, as these bumps are both the high-
est and the narrowest features present. In contrast, the outer C/He
transition zone should have a relatively minor effect on the mode
trapping.

We illustrate the mode trapping ability of this model in Fig. 8, in
which we plot, again as a function of �, the weight functions for
N2 (see Kawaler, Winget & Hansen 1985, their equation 8c) of the
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Figure 8. Examples of mode trapping of the eigenfunctions due to the
composition transition zones. The upper panel shows the bumps in the Brunt–
Väisälä frequency from Fig. 7 as a function of the buoyancy radius, �, and
the lower two panels show the weight function WF� for two different modes,
k = 11 and k = 21 (both with 
 = 1). The shaded regions indicate the extent
of the two most important transition zones; the differing amplitudes on each
side of the transition zones clearly illustrates the mode trapping which these
zones produce.

full numerical problem: the middle panel is the weight function for
an 
 = 1, k = 11 mode, and the lower panel is that of an 
 = 1, k =
21 mode. In the upper panel we show the bumps corresponding to
the composition transition zones, and in all panels we have shaded
the regions containing the two largest bumps, as these should pro-
duce the strongest mode trapping. As we can see, this is certainly
the case for the two modes we have selected: the modes show a
marked change in amplitude in these shaded transition regions, but
otherwise they propagate with essentially ‘constant amplitude’, i.e.
their amplitudes evolve according to the JWKB formula.

So how does mode trapping help break the core/envelope symme-
try? First, imagine that we wish to calculate the shift in periods due
to all the bumps, not just to the two large ones we have highlighted.
The k = 21 mode is trapped between the two transition zones, so it
will sample the bump at � ∼ 0.37 more strongly than modes such
as the k = 11 mode, which is not trapped in this region. Conversely,
the k = 11 mode has an enhanced amplitude in the outer layers (�
� 0.6), so it will sample the bump at � ∼ 0.77 more strongly than
modes such as the k = 21 mode, which is not trapped in this outer re-
gion. Thus, the effect which the smaller bumps have on the frequen-
cies is strongly influenced by the mode trapping which the larger
bumps produce. As a result, it should in principle be possible to
discern whether there are in fact two bumps rather than one large
one, what their relative locations are (e.g. both in the core, both in
the envelope, or one each in the core and envelope), and what their
relative strengths are.

Additionally, the presence of modes of different 
 may help in
resolving this core/envelope symmetry, as the outer turning point is
a function of 
 for many of the modes. Also, constraints on the rota-
tional splitting kernels (e.g. Kawaler, Sekii & Gough 1999) derived
from rotationally split multiplets may be of help. In future calcula-
tions, we will attempt to address quantitatively the conditions under
which it is possible to resolve the core/envelope symmetry, both in
terms of the number of modes required as well as the physical as-
sumptions needed regarding the shapes of the features to be resolved
in the Brunt–Väisälä frequency.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have demonstrated, both analytically and numerically, that a
symmetry exists which connects points in the envelope of our mod-
els with points in the core of our models. Specifically, we find that
a sharp feature (‘bump’) in the Brunt–Väisälä frequency in the en-
velope of our models can produce the same period changes as a
bump placed in the core, and we have numerically calculated this
core/envelope mapping. While we have restricted ourself to the case
of white dwarfs which pulsate in high-overtone g-modes, such a
symmetry should be a generic feature of all high-overtone pulsators,
whether they pulsate with g or p modes.

The specific motivation for much of our analysis has been the
well-studied DBV, GD 358. Given its mass, stellar evolution theory
leads us to expect that it has a C/O core, and that in some region of
the core there should be a transition from a C/O mixture to a nearly
pure C composition. If this transition begins at ∼0.5M�, then it will
produce a bump in the Brunt–Väisälä frequency at this point. As
discussed in the previous sections, such a bump could be mimicked
by an envelope transition zone with a depth of ∼10−6.0 M�. There-
fore, any incompleteness in the modelling of the core bump could
be ‘corrected’ by a transition zone in the envelope placed at a depth
of 10−6.0 M�. This could explain the initial He layer determination
of 10−6.0 M� by Bradley & Winget (1994) as well as the continu-
ing presence of a local minimum near ∼10−6.0 M� in the current
generation of models (Metcalfe et al. 2000; Metcalfe et al. 2001).

In addition, there is reason to believe that the actual C/He profile
may be two-tiered, with a transition from pure C to a C/He mixture
at ∼10−2 M� and another transition to pure He at ∼10−6 M� (Dehner
& Kawaler 1995; Córsico et al. 2002; Fontaine & Brassard 2002); if
this is the case, it is quite possible that the mode trapping effects of a
C/O transition zone in the core could become entangled with those
of the outer He transition zone. While additional considerations
may break this core/envelope symmetry, we need to be aware of
this aspect of the problem in order to make progress in modelling
these stars.

In summary, we have shown that, for moderate to high overtone
pulsators, there exists a symmetry in the mode trapping produced
by features in the core and those in the envelope which can lead to
ambiguity in determining the location of features such as composi-
tion transition zones. This may explain the present and previous fits
for GD 358, and at the very least is something which must be taken
into account in future asteroseismological fits.
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