

a Network for Observing White Dwarfs around the Globe

Mike Montgomery Institute of Astronomy, Cambridge

Overview

- What are white dwarfs?
 - small, very dense objects
 - endpoints of evolution for about 98% of all stars
- Why are they scientifically interesting?
 - Their ages allow us to date the Milky Way
 - We can study exotic physics
 - Some of them pulsate
- Large scale surveys
 - designed to find faint, blue quasars also find faint, blue white dwarfs
- Final thoughts + "Video Bonus"

Galaxy interactions can lead to star formation

Fig. 2. A CO integrated intensity map (white contours) overlaid on a true color HST image of the Antennae galaxies (95) from (21). [Courtesy Christine Wilson] The young SSCs are the bright blue objects seen in this image.

The interaction between the Antennae galaxies has led to bursts of star formation ("star bursts")

Star formation: "The Cone Nebula"

Molecular clouds, such as those found in the Cone Nebula, are the sites of star formation

Brief discussion of stellar evolution

- stars form this takes on the order of a million years
- they begin life on the "Main Sequence"
 - steadily convert hydrogen to helium through nuclear reactions

- spend most of their life in this phase (thousands of millions of years)
- as they exhaust their hydrogen reserves, they are said to evolve off of the Main Sequence

The Hertzsprung-Russell Diagram (H-R Diagram):

the absolute luminosity plotted versus the spectral type (temperature) of the star

The Main Sequence, on which stars begin their lives, is shown by the red curve

Stellar evolution (cont.)

- at first they burn helium to carbon
- if they are massive enough, even heavier elements will be produced
- they undergo mass loss, losing most of their mass

this can result in "planetary nebulae" being formed

- finally, the stars with initial masses less than about 8 solar masses will become white dwarfs
- stars which are initially more massive than this can also become neutron stars or black holes
- theoretically, the post-Main Sequence evolution is very difficult to model
- *observationally*, we are able to observe different phases of this evolution

This can be graphically shown by the following:

initial mass \rightarrow

evolution

final mass \rightarrow

The Importance of White Dwarfs

- endpoint of evolution of most (98%) stars
 - give us clues concerning stellar mass loss
- white dwarfs are born "hot" and then cool off steadily
 - their temperatures tell us how old they are
 - they can be used to determine the age of the Milky Way!
- are progenitors of Type Ia supernovae
- Some of them pulsate (change luminosity)
 - we can use their pulsations to study their interior structure this is called "asteroseismology"
 - they may be clues to exotic physics:

crystallization (diamonds in the sky) carbon/oxygen burning rates neutrino rates, convection, diffusion, ...

University of Cambridge Institute of Astronomy

The pulsations of white dwarfs are like the vibrations of a violin:

different pitches (frequencies) correspond to different patterns (modes)

 \Rightarrow the patterns/frequencies tell us about the interior structure of the instrument

This is also true for pulsating stars

- These patterns of temperature are the spherical analogues of modes of vibration of a violin
 - each pattern (mode) corresponds to a particular frequency (pitch)
 - by observing a pulsating star, we find the frequencies with which it pulsates, which allows us to learn about its interior structure

However, there is a catch:

- the observations need to be continuous (or nearly continuous) in order for the frequencies to be correctly determined
- from the ground, it is not possible to observe a given astronomical object for much more than about 12 hours from a given site
- we could go to space, although that's no guarantee
- or we could come up with ...

the Whole Earth Telescope

The Whole Earth Telescope (WET) (UT-Austin, circa 1995)

More than anything it is a network of *people* around the globe who agree to observe the same object for the same period of time (1–2 weeks)

The Founders:

Ed Nather

Don Winget

time \rightarrow

This star, G29-38, is pulsating simultaneously at many different frequencies (284 sec, 615 sec, 820 sec, etc.)

From such observations, we obtain a set of pulsation frequencies for each star. This allows us to constrain their:

- Mass
- Temperature
- Age
 - the age of the Milky Way is 9.5 ± 1 Gyr (thousand million years) this is completely independent of other techniques
- Internal composition
 - the carbon/oxygen ratio in the core
 - \Rightarrow important for Type Ia supernovae
 - \Rightarrow important for estimates of cosmological acceleration
 - whether crystallization occurs as they cool
 - neutrino rates
 - convection
 - magnetic fields

The Good News

- Many surveys are underway to detect quasars, which are faint and blue
- White dwarfs are faint and blue
- These surveys are finding lots of white dwarfs
- Surveys are finding a lot of white dwarfs:

The Sloan Digital Sky Survey (Fort Apache, New Mexico)

• We'll be learning a lot more in the future!

