

On-sky Image Quality Verification / Compensation Plan

March 27, 2015 (original)

April 3, 2015 (revised)

April 9, 2015 (revised)

Outline

- Overview
- HET system layout & error budget
- WFC-FPA alignment scheme
- Deployable Wavefront Sensor (DWFS) & tilt alignment to FPA
- Expected alignment error
- In-situ calibration & Measurement sequence
- Discussion on FPA tilt compensation & Example case studies.
- Summary
- Appendix

Overview

- Expected alignment-driven aberrations contributing to the image quality degradation
 - Major terms: Field constant coma, Field linear curvature/astigmatisms.
 - Additionally, field quadratic coma and field cubic astigmatisms can contribute.
 - All these terms are linearly coupled to alignment parameters.
- Available compensators and their influences
 - WFC motions
 - Decenter: Strongly image position, weakly field constant coma.
 - Tip/tilt: Strongly field constant coma, weakly field linear curvature/astigmatism.
 - Focal Surface (FS) motions
 - Decenter: Strongly image position, weakly field linear curvature.
 - Tip/tilt : Strongly field linear curvature.

First-order plan

- Align FS with respect to WFC.
- Point HET to on-sky target (geostationary satellite) on-axis and minimize coma by tilting WFC.
- Point to the target at off-axis FS positions and measure curvature.
- If necessary, minimize field linear curvature by tilting the FP

Layout & Error budget

- Focal Plane Assembly (FPA)
- Wide Field Corrector (WFC)
- Primary Mirror (M1)

Critical alignment

- WFC FPA
- M1 WFC

Static alignment error budget

- WFC-FPA
 - Focus: ±0.3mm
 - Centration: ±0.17mm
 - Tilt: ±90arcseconds
- M1-WFC
 - Focus: ±0.01mm
 - Centration: ±0.01mm
 - Tilt: ±4arcseconds

0.19wv linear curvature

Curvature

0.33wv coma

WFC-FPA Alignment Scheme

Scheme

- Observatory
- OF TEXAS AT AUSTIN

- Set up Video Alignment Telescope (VAT) at M3 Strongback centered/ normal to M4 CGH Reference.
- FPA Reticle target is aligned to M4
 CGH Reference in tilt (using VAT)
- FPA SMR target is aligned to M4
 Vertex Reference in centration/focus
 (using Laser Tracker).

Refer to Appendix for details of M4 references, VAT Laser Tracker, FPA targets (page 34-40).

Deployable Wavefront Sensor (DWFS)

Deployable Wavefront Sensor (DWFS)

Critical alignment (tilt)

- - Focal surface tilt is used to correct the linear field curvature.
 - Systematic tilt between two surfaces results in error in the linear field curvature measurement
 - This tilt is a function of
 - Registration accuracy of the IFU seats (where DWFS are mounted) to the FPA central boss (+/- 0.01mm focus direction, +/- 0.05mm centration).
 - Registration accuracy of each DWFS calibration pinhole to each IFU seat (+/-0.027mm in centration/focus)

Roll-up of WFC-FPA-DWFS alignment error estimate

Contributor	Focus (mm)	Centration (mm)	Tilt (arcsec)	Comment
FPA Target setup wrt FPA central boss	0.015	0.025	10	Installation accuracy
VAT cent/tilt to M4 CGH	-	0.010	5	Measurement accuracy
VAT cent/tilt to FPA Reticle	-	0.050	5	Measurement accuracy
LT focus to M4 VTX	0.025	-	-	Measurement accuracy at 2m
LT focus to FPA SMR	0.050	-	-	Measurement accuracy at 4m
Manual hexapod control	0.007	0.003	1	Resolution
Registration of the mean DWFS surface wrt FPA central boss	0.029 (maximum)	0.058	52 (maximum)	Registration / measurement accuracy (assuming all errors go to either focus or tilt)
Cumulative	0.061	0.081	66	RSS at 3σ
Requirement	0.3	0.17	90	

DWFS In-Situ Calibration (Establish WFC Pupil/Sub-aperture Geometry with Field stop)

DWFS In-Situ Calibration (Establish the calibration of DWFS internal aberrations with Calibration pinhole)

On-sky measurement sequence

DWFS-3

FPA tilt compensation

- Reduction of the linear curvature down to ±0.19wv over 22 arcmin.
 - This is sufficient to compensate for the image quality.
 - Linear curvature is dominant cause of image quality degradation.
 - However, the linear astigmatism remains uncorrected → Ok for the expected cases.

FPA tilt (Δα) leads to

- Beam angle change ($\Delta\beta$) to the focal surface, thus to the fibers. (where $\Delta\alpha = \Delta\beta$)
- Focal Ratio Degradation (FRD) occurs at the output of the fibers (unless the fibers are tilted to match the incoming beam angle to the FPA).
- Maximum marginal ray angle ~ nominal max. marginal angle + Δβ
- For a perfect fiber, the output beam focal ratio would be, to the first order,
 $f/\#_{out} = 0.5 / sin(nominal max. marginal angle + Δβ)$
- Beam angle change → Pupil shift in Operation WFS / Calibration WFS / Pupil
 Viewer → Recalibration or adjustment is needed.

Azimuthal Image Quality Variation is uncorrected.

- FPA is rotated to follow sky rotation (rho angle) while the WFC is fixed.
- FPA tilt compensation at one particular rho angle.
- In Case 1, image quality / throughput will azimuthally vary.

Uncorrected aberrations

- Most of the aberrations remains uncorrected after FPA tilt compensation.
 - Mainly astigmatism
 - Elongated / asymmetric PSF shape (substantial in case 1)
 - Varying over the rho angle change and the track (due to varying obscuration)
 - Adding systematic error to the HET guiding systems

Case #1 post adjustment with just-in-spec setup error

Case #1 post adjustment with just-in-spec setup error

EE50 Diameter

Case #1: other requirements

Metric	Requirement	Expectation	PASS/FAIL	Unit
Effective focal length	36450 – 36550	36492 – 36530	PASS	mm
Focal ratio**	3.645 – 3.655	3.321 (max)	FAIL	
Max. marginal ray angle	7.863 – 7.884	8.659 (max)	FAIL	degrees
Max. telecentric angle	0.0 - 0.01	0.951 (max)*	FAIL	degrees
Max. distortion	0.0 – 1	< 0.585	PASS	%
Un-vignetted portion of beam	> 80 on-axis > 64 at edge	> 80 on-axis > 64 at edge	PASS	%

^{**} Focal ratio is 0.5 / sin(max. marginal ray angle)

^{*} Telecentric angle closely corresponds to FPA tilt compensation.

Case #1 – 496 Spot diagram (guiding drift)

Case #1 – 496 Guiding drift (post-adjustment)

Refer to Appendix for examples of pupil obscurations (page 47).

22

Trk pos	Guiding center			
11K pos	X [asec]	Y [asec]		
1	-0.027	-0.002		
2	0.067	-0.002		
3	-0.009	0.180		
4	-0.018	-0.178		
5	-0.013	0.003		
Mean	0.000	0.000		
Range	-0.02 ~ 0.07	-0.18 ~ 0.18		

Case #4 post adjustment with just-in-spec setup error

Case #4 post adjustment with just-in-spec setup error

Case #4: other requirements

Metric	Requirement	Expectation	PASS/FAIL	Unit
Effective focal length	36450 – 36550	36492 – 36530	PASS	mm
Focal ratio**	3.645 – 3.655	3.505 (max)	FAIL	
Max. marginal ray angle	7.863 – 7.884	8.201 (max)	FAIL	degrees
Max. telecentric angle	0.0 - 0.01	0.414 (max) *	FAIL	degrees
Max. distortion	0.0 – 1	< 0.585	PASS	%
Un-vignetted portion of beam	> 80 on-axis > 64 at edge	> 80 on-axis > 64 at edge	PASS	%

^{**} Focal ratio is 0.5 / sin(max. marginal ray angle)

^{*} Telecentric angle closely corresponds to FPA tilt compensation.

Case #4 – 162 Spot diagram (guiding drift)

Case #4 – 162 Guiding drift (post-adjustment)

Trk noe	Guiding	center
Trk pos	X [asec]	Y [asec]
1	-0.087	-0.002
2	0.084	0.000
3	0.001	0.195
4	0.001	-0.193
5	0.000	0.001
Mean	0.000	0.000
Min/max	-0.087~0.084	-0.193~0.195

As-design WFC spot diagram (guiding drift)

As-designed WFC (no errors)

Corrected case 1 as comparison

As-design WFC spot diagram (guiding drift)

Trk pos	Guiding center		
11κ μυσ	X [asec]	Y [asec]	
1	0.001	-0.001	
2	-0.003	0.000	
3	0.001	0.095	
4	0.001	-0.094	
5	-0.001	0.001	
Mean	0.000	0.000	
Min/max	-0.003~0.001	-0.094~0.095	

Case1-42	X[mm]	Y[mm]	Z[mm]	Rx[degree]	Ry[degree]
WFC	0.545	-0.038	0.066	-0.0027	-0.0013
FPA	0.0	0.0	0.0	0.1752	0.4908

Case4-500	X[mm]	Y[mm]	Z[mm]	Rx[degree]	Ry[degree]
WFC	-0.109	0.067	0.010	-0.0002	-0.0007
FPA	0.0	0.0	0.0	-0.0382	-0.1225

Alternative compensation

- Should the HET performance fall significant short of the requirement, the following two compensations can be considered.
 - M4 adjusted to "optimally compensate" the image quality & telecentric error (based on Lee, Optics Express, 2010)
 - Knowing the exact misalignment state is not necessary.
 - However, the compensation can be made to optimally remove the dominant aberrations or errors.
 - Use the on-sky linear field curvature data
- **Example case in** the next page Use M4 tilt (& WFC rigid-body motion) as the compensators
 - 5 available measurements: Coma, 2 Astigmatisms, Field Curvature, Star position
 - 6 available adjustment (per axis): M4 decenter/tilt, M5 decenter/tilt, WFC ridgid-body decenter/tilt.
 - We only target the minimum set and FPA will not be tilted.
 - It will take several months minimum and multiple take-down/installation of the WFC → Risk to the hardware.
 - HET will not be operable during this.
 - Or the FPA IFU/fiber feed seats can be re-machined to "re-align" the fibers to the incoming beam angle to minimize the telecentric error.
 - Additional time/money for remaking the fiber feed mounts for all instruments.
 - HET can be operated with the existing fiber feed mount and reduced throughput while the new fiber feed mount is fabricated / tested.
 - This will require additional metrology to properly identify the incoming beam angle from the WFC.

28

On-sky based compensation example (case 1 – 496)

Strategy

- Adjusting M4 tilt to remove linear field curvature
- Then adjust WFC rigid-body decenter/coma to null out Coma and image position shift

Case1-496	X[mm]	Y[mm]	Z[mm]	Rx[degree]	Ry[degree]
WFC	-0.187	0.092	0.0	0.0035	0.0074
M4	0.0	0.0	0.0	-0.0106	-0.0325

On-sky based compensation example (case 1 – 496)

Field Aberrations

On-sky based compensation example (case 1 – 496)

Metric	Requirement	Expectation	PASS/FAIL	Unit
Effective focal length	36450 – 36550	36514	PASS	mm
Focal ratio**	3.645 – 3.655	3.687	ACCEPTABLE	
Max. marginal ray angle	7.863 – 7.884	7.786 (max)	ACCEPTABLE	degrees
Max. telecentric angle	0.0 – 0.01	0.0043 (max)	PASS	degrees
Max. distortion	0.0 – 1	< 0.573	PASS	%
Un-vignetted portion of beam	> 80 on-axis > 64 at edge	> 80 on-axis > 64 at edge	PASS	%

^{**} Focal ratio is 0.5 / sin(max. marginal ray angle)

Summary

Alignment between DWFS and FPA is the most critical

 Based on our best current knowledge, we think that we should have sufficiently accurate measurement & motion control and thus be able to compensate the image quality even in the current worst, Case 1.

Impact of FPA tilt compensation on throughput for fiber-fed instruments

- Potentially large telecentric angle into IFUs / fiber feeds of the HET instruments, that violates the specification.
- This results in the Focal Ratio Degradation (FRD) at the output end of the fibers, thus loss of photons on the order of 15 percent.
- Trade-off between the image quality and the telecentric angle.

Impact of extended & asymmetric PSF shape on HET guiding

- Note that FPA tilt only corrects linear field curvature. Astigmatism remains uncorrected and results in elongated / asymmetric PSF.
- Case studies:
 - Two opposite guiders along the tracker X-axis.
 - Extreme tracker obscuration along the tracker axes.
 - Max. ±0.125" centroid drift across extreme tracker positions
 - When tracker obscuration is at max in the orthogonal direction to the axis formed by two opposite guiders.

Alternative compensation is possible with risks

- Using the minimum number of mirror motions to reduce specific aberration(s).
- Refabricating FPA fiber feed mount plate.

Appendix

Alignment Reference

Video Alignment Telescope

McDonald Observatory

 VAT aligned to M4 CGH Reference to the following accuracy estimate (based on previous tests)

Centration: ±0.01mm at 3σ

Tilt: ±5arcseconds at 3σ

API Laser Tracker

LT to M4 Vertex Reference

Focus: ±0.025mm at 3σ worst case.

Laser tracker mounted on Tracker Carriage

FPA Targets

- FPA targets installed to the focal surface
 - Centration accuracy:±0.025mm at 3σ (SMR)
 - Tilt accuracy: ±10arcseconds at 3σ (Reticle)
 - Focus accuracy: ±0.015mm(?) at 3σ (SMR)
- Using VAT (wrt M4 CGH reference), align FPA Target in tilt
 - Tilt measurement accuracy: ±5arcseconds at 3σ
- Using Laser Tracker (wrt M4 Vertex reference), align FPA target in focus
 - Centration measurement accuracy: ±0.05mm at 3σ
 - Focus measurement accuracy: ±0.05mm(?) at 3σ

FPA Target

FPA Reference

- Central boss is the reference surface.
- This is where the tilt reference mirror will be directly mounted.
- Each IFU seat is referenced to the central boss. → When each IFU is mounted, their input face is tangent to the focal surface.
- Seats registered to the central boss to the accuracy of ±0.01mm

FPA Target alignment control

Centration control resolution: ±0.007mm

Tilt control accuracy: ±1arcsec

Focus control accuracy: ±0.003mm

- Therefore, the control accuracy is essentially equivalent to the laser tracker and VAT measurement accuracy
 - ±0.05mm in x,y,z.
 - ±5arcsec in tip/tilt

DWFS characteristics

- DWFS parameters (Hartmann-Shack Sensor)
 - Detector: 5.86 microns pixel, CMOS, 82% QE, 41fps, Global shutter, 1900x1200
 - Pixel scale: 0.14 arcsec.
 - Field of View: 6 arcsec diameter.
 - MLA pitch: 0.25mm diameter (Hexagonal shape)
 - Sub-aperture density across HET pupil: 19 (Hexagonal grid) (798px diameter)
 - Maximum mode to be sensed: Up to Zernike #56 (radial order 10).
 - Calibrated accuracy: better than 0.01wv per mode at 3σ
 - Measurement repeatability: better than 0.05wv per mode at 3σ
 - Worst case: adding 0.05wv linear field curvature.

DWFS Opto-mechanical layout

DWFS Head Assembly

DWFS Lab registration (Field Stop Registration to Detector)

- Define DWFS field stop in X/Y/Z for calibration (Field stop is a 1.05mm dia. pinhole).
- 1. Set field stop in Z to minimize separation of field stop images (thru MLA) on the detector.
- 2. Set field stop in X/Y to center the field stop images (thru MLA) on the detector.
- Establish MLA geometry projected on the detector using the field stop images.
- 4. Measure field stop position under the microscope and set this as the reference position.

DWFS Lab Registration (Calibration Pinhole Registration to

- Position the calibration pinhole to the center of the field stop in X/Y/Z (Calibration pinhole is 0.05mm dia.).
- 2. Further refine X/Y/Z by minimizing the spot centroid deviation wrt MLA geometry constructed by the field stop image.
- 3. Locate the final X/Y/Z position of the calibration pinhole.
- 4. This is the position at which the DWFS internal optics aberration are to be calibrated in-situ.

Calibration pinhole registration fixture

- Register the DWFS calibration pinhole center to the IFU seat.
- Use separate fixture where a ball center is accurately registered to the mounting seat (+/-0.025mm).
- Under a point source micro scope, locate the ball center (+/-0.005mm)
- Mount each DWFS to the same seat and locate its field stop center relative to the center of the ball using the same point source microscope. (+/- 0.005mm)
- Repeat these steps multiple times to determine the uncertainty bound of the measurement. (+/-0.01 mm)

Calibration pinhole registration fixture

Pupil illumination

Position in track ———

- As HET tracks, the pupil illumination changes due to the WFC position relative to the primary
- M1 illumination combines with the WFC fixed obstruction and vignetting to create a complex, time variable pupil illumination as a function of field position
- The convolution of the illumination with wavefront creates a time-variable point spread function in the outer field which can result in centroid shifts for the guiders
- Misalignment of WFC makes this effect worse.