FORMATION OF SUPERMASSIVE BLACK HOLE: DYNAMICS OF HALO GAS COLLAPSE

Jun-Hwan Choi (UT Austin)

with I. Shlosman (UKY), M. C. Begelman (UC Boulder)

SMBHs are everywhere in Universe

Two Models for a SMBH seed (Rees 1984)

Pop III remnant (z>20)

(Haiman & Loeb 2001) \rightarrow Pop III stars are very massive >100 M_{\odot} \rightarrow Gas collapse in ~10⁶ M_{\odot} halo \rightarrow Yield ~100 M_{\odot} SMBH seed at z>20

 \rightarrow These BH seeds grow to AGN

<u> Direct halo gas collapse (z~15)</u>

(Bromm & Loeb 2003, Begelman 2006) \rightarrow From direct halo gas collapse to form massive BH seeds $\rightarrow \sim 10^8 M_{\odot} (T_{vir} \sim 10^4 K)$ halo gas collapse through the atomic cooling \rightarrow Yield massive SMBH seed at $z \sim 15$

S.G. Djorgovski et al. & Digital Media Center, Caltech

Pros and Cons

- Population III remnant
 - > It is natural first candidate: We know how to make seed BH.
 - > Time scale (from z>20 to $z\sim7$ to $\sim10^9M_{\odot}$)
 - ▶ Takes ~7x10⁸ yrs to growth ~10⁹M_☉ close to age of Universe (Mortlock et. al. 2011: z~7.085 with M_{BH} ~2x10⁹M_☉)
 - BH slingshot and ejection from mini-haloes during mergers
 - BH feedback regulates gas accretion
 - ▶ New PopIII studies predict lower mass (~50M_☉)
- Direct Gas Collapse
 - Easy to growth by accretion/mergers from z~15 to z~7
 - Need an exotic process to make seed BH
 - Dynamical Problems
 - J-barrier prohibit gas collapse
 - Fragmentation depletes accreting gas

Schematic of Direct Collapse Process

LW Background suppress H₂

 $\sim 10^{8} M_{\odot}$

Gas collapses and becomes Gas Bar redistribute J SMBH seed forms turbulent → Overcomes J barrier By SMS/Quasistar → Suppress Fragmentation

SMS/Quasistar Model

- \checkmark Very massive object (>>10⁴M_{\odot})
 - ✓ Rapid inflow prohibits relaxation
 - $\checkmark\,$ Inner core burn nuclear fusion and collapse to ${\sim}100~M_{\odot}BH$
- Quasistar : BH accrete the mass as the Eddington rate of the whole object
- ✓ Takes a few thousand years from 100 $M_{\odot}BH$ to $10^4 M_{\odot}$ -10⁶ $M_{\odot}BH$

Isolated Halo Gas collapse

: Study dynamical processes in direct collapse

(Choi, Shlosman, & Begelman 2013)

Enzo AMR for hydro and gravity solver

- > Refined by gas density
- > Non-equilibrium atomic cooling (Abel et al. 1997)

Cosmologically motivated idealized IC

- > Isolated isothermal sphere for DM halo (~ $10^8 M_{\odot}$, ~1 kpc)
- > Isothermal gas sphere in DM halo

 $> f_{gas} \sim 0.16$, $r_{core} \sim 100 pc$,

 $>\lambda$ ~0.05 flat rotation (outside) + solid rotation (inside)

Different DM cores ($A \rightarrow E$)

- Small halo core make steep gas disk structure
- > Model A, B, and C collapse and Model D and E not

Density (g/cm^3)

Density (g/cm^3)

Turbulence *Velocity & Vorticity*

Turbulence (II) Gas Density PDF (Inner collapse region)

Speculate BH seed mass

- Different core halo result in different initial disk profiles
 - Larger core \rightarrow Shallower disk
 - Off-center disk fragmentation occurs ~13.4 Myr
 - Shallow gas disk collapses late
 - \rightarrow larger collapsing radius (R_{coll})
 - \rightarrow larger collapsing mass
 - $\rightarrow \log M_{coll} \sim \log t_{coll}$
 - Assuming the all mass in R_{coll}

Does the direct collapse occur in the ideal model expected in the Universe?

Need to study cosmological simulations!!!

Cosmological Simulation

- MUSIC Cosmological Zoom-in IC generator
 - 2nd-order Lagrangian perturbation theory
 - WMAP7 cosmology
 - DM only (w/ AMR): find massive halo at z~10 (128³ grids)
 - Zoom-in : DM+Baryon (X4 additional initial refinement and AMR)
- ENZO AMR

Mpc (comov)

At $z\sim12.37$, $\sim5x10^7$ M_{\odot} DM halo experiences direct gas collapse.

Run-away collapse condition

- Outer halo
 - $\rho_{dm} > \rho_{gas}$
- Inner halo
 - $\rho_{dm} < \rho_{gas}$
- \square r ~ 20pc
 - $\rho_{dm} \sim \rho_{gas}$
 - Run-away collapse start
- Gas cooling contract the halo gas and when ρ_{dm} ~ ρ_{gas} the run-away collapse start

 $\begin{array}{c} \text{Density}(\text{g/cm}^3) \\ 10^{-26} \quad 10^{-24} \quad 10^{-22} \quad 10^{-20} \end{array}$

- > Gas accretion in the collapse region reaches up to $\sim 1M_{\odot}/yr$
- > Two phases
 - Outer : DM potential dominant
 - Inner : Gas potential dominant
- Strong mass accretion is an important ingredient to form SMBH seed from direct collapse

Long-term evolution of collapsing gas and central object

- Numerically, run-away gas collapsing can reach the maximum refinement and open halts and/or significantly slows down the simulation.
- □ Sink Method in Enzo (Wang et. al. 2010)
 - Jean criterion : Gas above the Jean resolution coverts to the sink
 - Mass accretion : Bondi-Hoyle formula
 - Sink merger : two sinks come closer to ~10 cells distance
- Three sink resolutions
 - Level 10 (7.63 pc/h in comoving)
 - Level 12 (1.91 pc/h in comoving)
 - Level 15 (0.24 pc/h in comoving)

- Level 12 Simulation 500pc(Comov)
- Central sink forms and continuously accrete gas and merge other sinks
- Central sink forms first, resides at the center of potential, and dominant total sink mas (>99%)
- > Disk feature as well as gaseous bar are clearly observed.

Sink Mass evolution

- Sink particle mass reaches ~10⁶ M_o only few Myr after the sink forms.
- Three different resolution of simulations show good convergence of the sink mass
- Amount of continuous gas accretion is large enough and fast enough to make SMBH seed configuration

Summary & Future

- Both the idealized and cosmological simulation we see the run-away collapse in the atomic cooling DM halo aided by angular momentum transfer and turbulence flow.
- Run-away collapse leads rapid gas accretion and forms massive central object in very short period of time
- More detail study for the gas dynamics in cosmological simulation w/ and w/o sink : J-transfer and Turbulence
- Additional physics for in small scale evolution : Chemistry (H₂ and metals), Radiation, MHD
- Cosmological time scale simulation
 - Toward M-σ relationship