
gconv

The procedure gconv computes the discrete convolution of an input array with a
Gaussian kernel.

Syntax

GCONV,x,y,fwhm,nx,ny[,ppr=ppr][,nsigma=nsigma][,inter=inter] [,original=original]

Return Value

GCONV returns the smoothed spectrum, and a (possibly resampled) array of ab-
scissae.

Arguments

x - (float array) input array of abscissae (e.g. wavelength)

y - (float array) input array (ordinates, e.g. flux array)

fwhm - (float) FWHM of the Gaussian kernel (pixels)

nx - (float array) output array of abscissae (e.g. wavelength)

ny - (float array) output array (ordinates, e.g. flux array)

Keywords

• ppr - (float) number of pixels per resolution element

• nsigma - (float) how far the convolution goes in terms of the kernel sigma
(default is 3)

• inter - if set, the x-axis is interpolated to force a constant step; if the step is
already constant, ’inter’ will have no effect

• original if set, the original sampling is kept for the output arrays, unless ’in-
ter’ is also set and an interpolation is performed, in which case, the output
x-axis (array nx) will just have the same number of points as the input x, but
resampled to have a constant step.

1

Discussion

The code performs a straight (i.e. in direct space) discrete convolution of an input
array (y) with a Gaussian kernel

nyi = (y ⋆ G)i =
m∑

j=−m

yi−jGj, (1)

where the kernel G is sampled symmetrically around the origin with 2×m+1 points.
Because G is symmetric, we can also write

nyi =
m∑

j=−m

yi+jGj , (2)

which is what the code actually implements.

By default this routine automatically adjustes the sampling, keeping the number of
pixels per resolution element to be 3 – this can be changed by varying the keyword
’ppr’. When the width of the Gaussian kernel is large, this gives a substantial speed
up compared to the case of keeping all the points in the arrays (frequencies)1.

Note that if the kernel is not well sampled (FWHM< 2) the results will be inaccu-
rate.

Near the edges the discrete convolution becomes ill-defined, as we run out of data.
There are several workarounds for this issue, such as considering the array repre-
sents one cycle of a periodic function, but here we just trim the edges, so that the
first data in the output arrays are sufficiently far from the edges of the input arrays
(>nsigma×sigma or about |FWHM*1.27| pixels with the default nsigma=3).

References

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986, Numerical
Recipes, Cambridge: Cambridge University Press

Examples

1. Smooth an input spectrum with a Gaussian of FWHM=2.0 AA assuming the
spectrum is given on a uniform (linearly sampled) wavelength scale with a
step of 0.1 AA.

1Thanks to Lars Koesterke for this idea!

2

IDL> fwhm=2.0/0.1
IDL> gconv,w,f,fwhm,w2,f2

2. Smooth the same spectrum with a Gaussian of FWHM=50. km/s

IDL> step=(max(alog(w))-min(alog(w)))/n elements(w)
IDL> fwhm=50./299792.458/step
IDL> gconv,alog(w),f,fwhm,w2,f2,/inter

Because of the keyword inter, the spectrum will be internally interpolated to a
step in ln (w) of step=(max(alog(w))-min(alog(w)))/n elements(w) Then the
50 km/s (or V/c = 0.000166782) is equivalent to 50./299792.458/step pixels.

Version History

C. Allende Prieto, Univ. of Texas, coded in March 2006

3

