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FERRE is a data analysis code written in FORTRAN90. It matches models to data, taking a

set of observations and identifying the model parameters that best reproduce the data, in a chi-

squared sense. Model predictions are to be given as an array whose values are a function of the

model parameters, i.e. numerically. FERRE holds this array in memory, or in a direct-access

binary file, and interpolates in it. The code returns, in addition to the optimal set of parameters,

their error covariance, and the corresponding model prediction.
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1 Introduction

Using models to interpret observations is a very common task in science. Models may be

sophisticated, sometimes the result of solving complex sets equations, and can only be evaluated

numerically in some cases. The data sets to be analyzed may be large, regarding both the

number of objects and the data per object. And so can be the models, which may involve a large

number of parameters.

FERRE matches physical models to observed data. It was created to deal with the common

problem of having numerical models that are costly to evaluate, and need to be used to interpret

large data sets. FERRE provides flexibility to search for all model parameters, or only some

them holding constant the others. The code is written to be truly N-dimensional and fast. The

merit function to evaluate agreement between models mi and observations oi (with uncertainties

σi(o)) is the χ2 square

χ2 =
∑

i

1

σ2
i (o)

(mi − oi)
2. (1)

Models are to be encapsulated in a multi-dimensional array, with as many dimensions as

parameters. The model array is held in memory for speed, but it can also be written in disk

ans used as a data base. Models are interpolated with a choice of algorithms (linear, Bezier

quadratic, cubic, and cubic splines), with interpolations carried out in a sequential fashion.

Several optimization algorithms are available to search for the best-fitting model parameters:

the Nelder-Mead algorithm (Nelder & Mead 1965), the Boender-Timmer-Rinnoy Kan global

algorithm (Boender et al. 1982), Powell’s UOBYQA algorithm (Powell 2000), a Truncated

Newton algorithm (Dembo & Steihaug 1983), or a weighted sum over the parameters space.

Several schemes are also available for estimating error bars on the derived abundances.

Some applications can benefit from data compression applied to models based on Principal

Component Analysis, and parallelization over multiple cores, which are both handled in a way

that is fairly transparent to users. FERRE has a history of successful applications to the analysis

of astronomical spectra since 2003 (see §10).

2 Optaining and compiling the code

FERRE is free software. It is written in FORTRAN90, and parallelized with OpenMP. It is been

successfully compiled with gfortran, g95, the Intel compiler (ifort), the Sun Studio Compiler,

the PGI compiler, the IBM compiler (xlf90), and a few other.

The code can be obtained from

http://hebe.as.utexas.edu/ferre

Once the tar ball with the source code is downloaded and unpacked, you should end up with

three folders: src (the ’code’), test (test data), and doc (this manual). Change directories to src

and invoke make to compile the code

>cd ferre/src

>make

and you should end up with two executables, one for FERRE (’a.out’) and one for converting

model grids from ASCII format to (direct-access) binaries.

3 Running the code

To run FERRE we need a model grid (see Section 4), a control file (input.nml; see §5),

and input data files (see §6.1). Once all these are in place, we simply need to invoke the ferre

executable from a working directory, where the aforementioned files (or symbolic links to them)
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need to be. After describing the format for the input files, we illustrate how to run FERRE with

examples in Section 7.

4 Model grid

In order to run FERRE you need to make your model predictions available as a data file. The

model of your choice will predict the same quantities that we have observations for, as a function

of the model parameters. This is precisely what is in the file that contains the model grid, a

multi-dimensional array with as many dimensions as model parameters. In general, there will

be multiple observations, e.g. multiple quantities or the same quantity observed as a function of

time. This gives one additional dimension to the model grid. The grid must be perfectly regular,

i.e. if two parameters are considered, and the first one is sampled with 4 values and the second

one with 6 values, the grid will have 24 models, corresponding to all possible combinations of

the values for the two parameters.

The format of the file that contains the model grid (a.k.a. the SYNTH module) is very

simple. Each model prediction corresponding to a given combination of parameters take a full

line in the file. In our previous example with two parameters, and 4 and 6 values for each of

the parameters, respectively, the file would have 24 lines. If the array of observed quantities has

20 elements, then each line in the file will have 20 columns. The numbers (model predictions)

are preceded by a header explaining the contents. The order of the model predictions can be

easily recovered. Since the grid is regular, a series of nested loops, according to the information

specified in the file header, gives the values of the parameters that correspond to each line in the

file.

An example may help. If we are dealing with spectroscopy of stars, and the observations are

relative photon fluxes at different wavelengths, our model grid could include spectra predicted

as a function of effective temperature, surface gravity, and metallicity1. If we consider a model

grid of spectra that includes 100 wavelengths, with 10 effective temperatures, 10 gravities, and

10 metallicities, our grid file will have 1000 lines, with 100 columns each.

Since the model grids are perfectly regular, with constant steps in the parameters that define

them, a few quantities can describe them. Those quantities are provided in the header of the

file. For example, the values that correspond to each of the parameters can be described with a

linear equation, Y = aX + b, one for each parameter. The relevant coefficients are given in the

file header, identified with the keywords LLIMITS (coefficient b) and STEPS (coefficient a).

The model grid file always begins with the line

&SYNTH

which tells FERRE the header is a name list with that name. Only a few of the keywords

possible in the grid header are mandatory:

• n of dim: Number of dimensions (parameters) of the model grid,

• n p: An array with the number of data points in the grid for each dimension (it is an array

with as many elements as dimensions the grid has),

• npix: Number of data points per sample (frequencies for spectroscopy),

• llimits: Array with the minimum values for each of the model parameters, and

• steps: Array with the steps (difference between two consecutive nodes) for each dimen-

sion.

1Most stars are approximately made of 80% H, 18% He, and about 2% of the rest of elements. It is the latter

group of elements, those heavier than He, what matters the most for shaping stellar spectra, and as such it is one

of the parameters that needs to be considered in models.
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Table 1: Parameters that can be used in the header of a FERRE model grid. Only the first few

at the top of the list are usually required.

Parameter Type (elements) Meaning

Mandatory Parameters

n of dim integer Number of dimensions

n p integer (n of dim) Number of data points per dimensions

npix integer Number of observations per sample

llimits integer (n of dim) Lower limits for the model parameter arrays

steps integer (n of dim) Steps for each of the parameter arrays

Optional Parameters

multi integer Number of headers after the main one

synthfile internal string Internal name of the model grid file

id string File identifier

date string Date when the file was assembled

npca integer (*) Number of PCA components per PCA section

label string (n of dim) Tags identifying the parameters of the model

transposed integer A value > 0 indicates data are transposed

comments1...6 Comment fields

Optional Parameters intended for use with spectroscopic data

wave float (2) Coeffs. in λ = wave(1) + (i-1)*wave(2) (i=1...npix)

logw integer Values of 0/1/2 indicate we use λ/log10(λ)/ln(λ)

vacuum integer Values of 0/1 indicate air/vacuum wavelengths

resolution float Resolving power (λ/FWHM) of the spectra

original sampling float Velocity sampling in original calculations (km/s)

synspec integer When > 0 indicates spectra computed with Synspec

modo integer When synspec=1, this the value of ’imode’

invalid code float Value used to indicate data are unavailable

constant float Constant value subtracted to the entire grid

continuum float (4) Coefficients used for continuum normalization

precontinuum float (4) Coefficients for a pre-normalization

file data19 string Atomic line list used in the synthesis

file data20 string Molecular line list used in the synthesis

These, and other optional keywords are listed in Table 1. Many of the optional keywords

are intended to deal with spectroscopic data; they are mainly for tracking the contents of the

file, and they are clearly marked in Table 1.

5 Control file

The control file is named input.nml. It tells FERRE what to do: the dimensions of the

problem, the name of the input files, how to search for the solutions, or how to interpolate. The

control files must always begin with the line

&LISTA

As with the model grid file, only a few of the keywords are mandatory:

• ndim: Number of dimensions/parameters the problem has (must match n of dim in the

model grid file),

• nov: Number of parameters to vary (those we wish to search for; the remainder of the
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parameters will be held at constant values of the user’s choice),

• indv: Array of indices corresponding to the parameters to vary (following the order given

in the model grid),

• synthfile(1): File name for the model grid (can use several),

• pfile: Parameter file (name of the file with ’input’ parameters; see §6.1 for details),

• ffile: Data file (name of the file with the observations; see §6.1 for details),

• erfile: Error data file (name of the file with the uncertainties associated to the data file, in

the same format; see §6.1 for details),

• opfile: Output parameter file (output from FERRE, which contains the best-fitting model

parameters for each sample), and

• offile: Output data file (output from FERRE, containing the best-fitting model predictions

for each sample).

These and the remainder of the possible keywords are explained in Table 2.

6 Input/output parameter and data files

Usually FERRE will take, in addition to the model grid and the control file, three input files,

and produce two output files. We describe below the contents and format for these files.

6.1 Input data files

• Input parameter file (pfile; usually associated with the .ipf file extension): This file

contains an identifier for each spectrum in the first column, and then as many additional

columns as parameters in the model grid (ndim). The values for the parameters do not

need to be known unless we are holding some of them constant in the search. By default,

the searches are initialized at the values in the center of the grid, but one can also choose

to start at the values given in the input parameter file, or at other locations (see §8.3).

• Input flux file (usually associated with the .frd extension): This file contains the actual

spectra to be fit. Each line is a spectrum, with as many columns as frequencies (npix). In

many applications the spectrum will be sampled exactly on the same frequencies as the

model grid, but if the two do not match the code can interpolate (see §??).

• Input Error file (ffile; OPTIONAL, .err): This file has exactly the same format as the

input flux file, but with the uncertainties in the fluxes instead of the fluxes themselves. If

the signal-to-noise ratio is constant, this file can be omitted and the keyword SNR can be

used instead in the control file (input.nml).

• Input wavelength file (wfile; OPTIONAL, .wav): This file specifies the wavelengths

associated with each input spectrum when these do not match those in the model grid.
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Table 2: Parameters that can be used in the FERRE control file (input.nml). Only the first

few at the top of the list are mandatory (default values in parenthesis).

Parameter Type (elements) Meaning

Mandatory Parameters

ndim integer Number of dimensions/parameters (should match n of dim)

nov integer Number of parameters to search

nov=0 if we just want to interpolate in the grid

indv integer (nov) Array with the indices for the parameters to search

synthfile string (*) File name(s) for the model grid(s)

pfile string Name of the input parameter file

ffile string Name of the input data file (the observations we want to model)

erfile string Name of the file with the uncertainties in the input data

opfile string Name of the output parameter file with the optmized parameters

offile string Name of the output best-fitting models

Optional Parameters

nobj integer Number of samples (spectra) to analyze (all by default)

nlambda integer Number of data points (frequencies) per sample

f format integer Format of the model grid (0 for ASCII or 1 for binary)

f access integer Mode of accessing the model grid data

0 for RAM or 1 for direct-access

inter integer Interpolation algorithm (default 1)

0 for nearest neighbor

1 for linear

2 for quadratic Bézier

3 for cubic Bézier

4 for cubic splines

errbar integer Choice of algorithm to compute error bars (default 0)

0 to adopt the distance from the solution at which

χ2 = min(χ2) + 1

1 to invert the curvature matrix

2 to perform numerical experiments injecting noise in the data

nruns integer Number of searches to be done (default 1)

init integer Choice of starting point(s) for searches (default 1)

0 to use the values in pfile

1 to follow the rules set by keyword indini

indini integer (ndim) Fine control of starting points (default 1)

0 start at random

1 start at the grid center

>1 start at the center of indini(i) equidistant cells

[requires setting nruns =
∏

i indini(i)]
wfile string Name of the input data file with wavelengths

[same format as ffile or erfile]

lsffile string Name of the input data file with information on the LSF

winter integer Switch to wavelength interpolation (default 0)

0 No interpolation

1 Interpolate observations, 2 fluxes (both require wfile)

algor integer Search algorithm (default 1)

1/2/3/4 for Nelder-Mead, Boender-Timmer-Rinnoy Kan,

Powell’s or Nash’s truncated Newton algorithms

lsf integer LSF shape (0/1/2/3/4/11/12/13/14 – default is 0)

nthreads integer Number of threads for parallel processing (default 1)
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6.2 Output data files

FERRE will usually produce two output files

• Output parameter file (opfile; usually with an extension .opf): with a format similar to

the input parameter file, plus additional columns. The first column is identical to the first

one in the .ipf: the identifier for each spectrum. This is followed by as many columns

as parameters in the grid (ndim), with the values fixed or derived in the search. Up to

this point the .opf is identical to the .ipf in format, but then there is again ndim additional

columns with the uncertainties in the parameters (these will be zero for the parameters that

were held constant). Three more columns follow, giving the fraction of photometric data

points (useful when multiple grids combining spectroscopy and photometry are used),

the average log(S/N)2 for the spectrum, and the logarithm of the reduced χ2 for the fit.

Additional columns with the covariance matrix of the errors can be output setting to 1 the

keyword COVPRINT. Since the matrix is symmetric, only the elements on the diagonal

and above are printed (row by row), a total of ndim×(ndim+1)/2 elements.

• Output flux file (offile; .mdl): With the same format as the input flux file, this file

contains the best-fitting model, derived by interpolation in the grid for the corresponding

parameters in the output parameter file.

7 Examples

Bundled together with the source code, there are several examples, all based on a grid of models

used in the SEGUE Stellar Parameters Pipeline (Lee et al. 2008a,b; Allende Prieto et al. 2008).

The grid is in the file f ki13 1000.dat, which is a 3D grid of model stellar spectra spanning

the range 4400 ≤ λ ≤ 5500 Å, that covers −3.83 ≤[Fe/H]≤ 0.67, 450 ≤ Teff ≤ 7500 K,

and 1 ≤ log g ≤ 5. We will first interpolate models in the grid, then analyze a set of fake

observations to inferred the model parameters, and lastly fix two of the parameters and derive

the third.

7.1 interpolating in a grid

The control file, described in Section 5, has a keyword nov to specify how many of the ndim

dimensions in the grid are to be searched. The same keyword, set to zero, can be used to

interpolate spectra.

As an exercise we will interpolate three models in the aforementioned stellar grid. We will

get spectra for a star like the Sun ([Fe/H]= 0, Teff = 5777 K, and log g = 4.437), and two more

similar stars, but with lower metallicity, [Fe/H]= −1 and −2.

The control file has to be named input.nml, so we will copy the example in

input.nml interpol to input.nml. This file looks like this

&LISTA

NDIM = 3

NOV = 0

SYNTHFILE(1) = ’f ki13 1000.dat’

PFILE = ’interpol.ipf ’

OFFILE = ’interpol.mdl’

/

Only the minimum necessary parameters are included in this file: we state the number of

dimensions, tt nov=0 for interpolation, the grid name, an input parameter file with the desired

parameters, and an output flux file where the interpolated fluxes will end up.
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To run the code in the test directory, where the input parameter file and the input.nml file

are, call the ferre executable

> ../src/a.out

and watch the standard output information come out. Go ahead, plot the data in interpol.mdl

(one spectrum per line, each with 670 columns/wavelengths) and examine how the depth of the

lines reduces with the metal abundance of the star. If you want to reconstruct the wavelength

scale of the spectra, look at the information in the WAVE and NPIX keywords in the header of

the model grid: λ = 10.0.000144864784013797×(k−1)+3.64345108784598, with k = 1, 2..., 670.

7.2 inferring all the parameters in the grid

Next we will try to fit a bunch of fake observations. The observations must have the same

resolution as the model grid (coded in the RESOLUTION keyword in the header of the grid),

and be sampled on the same wavelength scale for consistency. In this case or observations are

nothing but models from the grid to which we have injected Gaussian noise at a 5% level.

This example is given in the file input.nml all, which looks like this

&LISTA

NDIM = 3

NOV = 3

INDV= 1 2 3

SYNTHFILE(1) = ’f ki13 1000.dat’

PFILE = ’ki13 1000.ipf ’

FFILE = ’ki13 1000.frd ’

ERFILE = ’ki13 1000.err’

OPFILE = ’ki13 1000.opf’

OFFILE = ’ki13 1000.mdl’

ERRBAR = 1

/

Again, this is a nearly minimal file that specifies the number of dimensions ndim, how

many we’re actually searching nov, their indices indv, the name of the grid file, the input

parameters, observations and error bars (pfile, ffile, erfile), as well as the name

for the sought-after parameters (opfile) and best-fitting spectra (offile). We also have an

optional keyword for telling FERRE how to compute the error bars. By default the code uses a

simple procedure that looks how far one has to perturb the solution to cause a large change in

the χ2 (errbar=0), but setting errbar=1 makes the code to invert the curvature matrix and

take the diagonal for the variances.

As in the previous example, we copy the file input.nml all to input.nml and run

ferre in the test directory

../src/a.out

where the output files will appear after a few seconds. Plot one of the spectra in the input file

ki13 1000.frd – there is one per line. Compare it with the best fitting model in the same

line of the ki13 1000.mdl file. Look at the best-fitting parameters in ki13 1000.opf

and compare them with the true parameters of the fake observations in ki13 1000.ipf. In

some cases, especially at low metallicities, the errors are significant. The information that can

be extracted from a stellar spectrum that has been continuum normalized, has low resolution

(R ≡ λ/δλ ∼ 1000), narrow wavelength coverage (450-550 nm), and a signal-to-noise ratio of

20, is limited. Fig. 1 shows some statics for the residuals of the 62 spectra in this example.

In this case, since we are fitting all three parameters, the input parameter file does not need to

include sensible values, unless we what to give the code a sensible place to start the search. By

default the code starts searching at the grid center, but there are several other options available
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Figure 1: Comparison between the parameters for the simulated observations and those re-

covered by FERRE: parameters 1, 2 and 3 correspond to [Fe/H], Teff , and log g, respectively.

The top panel shows the output (recovered) parameters versus the input (’true’) values, and the

bottom panels show (black histograms) the distribution of residuals (recovered – true). The red

curves are Gaussian fitted to the data. The blue histograms show the distribution of uncertainties

estimated by the code (errbar=1). In addition to estimates of the mean offset and distribution

width from the Gaussian fits (<O–I>) and σg), the lower panels show a robust determination

(σr) and a straight calculation of the standard deviation (σs).

(see §8.3).

7.3 holding constant some parameters while fitting others

Ferre gives you flexibility about what parameters to search and which ones to hold constant. If

we repeat the previous exercise but change in input.nml

NOV = 1

INDV = 2

the search will only be done for the second parameter of the grid (Teff), holding constant the first

and the third ([Fe/H] and log g) to the values in the input parameter file (ki13 1000.ipf),

which is our test case contains the ’true’ values for the simulated observations.

If we repeat the statistics for the differences between the output and input (’true’) effective

temperatures, we will find that the scatter has reduced from about 130 down to just 60 K. As

might be expected, knowing the true values of the other two parameters leads to more accurate

determination of the third.

8 Advanced use

The following sections are devoted to described some of the features of FERRE that go beyond

the most basic use.
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8.1 Multiple ways of storing and accessing the model grid

One of the keys for speed in FERRE is holding the model grid on which models are interpolated

in the RAM memory of the computer. One pays the penalty of having to read the entire grid

in memory before starting the optimizations, but then the merit-function evaluations proceed

much faster than having to read the models from a hard drive. For large grids, reading the data

from disk can still be painful. This can be reduced significantly by storing the grid in binary

form.

FERRE comes with a tool for transforming from ASCII to binary any properly formatted

grid: ascii2bin. For example, to transform to binary the grid in the test directory type

../src/ascii2bin

and the code will ask for the input file (’f ki13 1000.dat’ in this case), and whether the out-

put is to be formatted or unformatted (answer unf in this case). Once the code is finished,

you should end up with two new files: f ki13 1000.hdr, which contains the header, and

f ki13 1000.unf, which holds the unformatted (binary) data. Once you have the model

grid converted, you can start using it this fashion immediately by adding the keyword

F FORMAT=1

to your input.nml. If you are pressed for space, at this point you can remove or compress the

ascii (.dat) version of the model grid, replacing its name on the input.nml file by the smaller

file containing only the header (.hdr).

Sometimes the model grid may be too large to hold on memory. Or we may be in the situ-

ation that the time to load it in memory exceeds the actual optimization time, perhaps because

we only have one or a few objects to fit. In that case we can avoid loading the grid in memory,

accessing the models as they are needed directly from the hard drive. To do this, we just need

to switch on another keyword in the input.nml

F ACCESS=1

This requires that the model grid has been previously converted to binary format, so that the

’records’ in it are perfectly structured (and therefore F FORMAT=1 in your input.nml).

8.2 High order interpolation

By default the interpolations in the model grid (the ’library’) are linear. This means the keyword

INTER=1. Higher order interpolation can be used, and are generally recommended for accuracy

by changing INTER to 2 (Bézier quadratic), 3 (Bézier cubic), or 4 (cubic splines). Mészaros

& Allende Prieto (2013) have performed a systematic study of the uncertainties associated with

the multidimenaional interpolation of stellar spectra.

8.3 Initialization of the searches

By default FERRE performs only one search for the best solution. However, sometimes is

usefult to perform several searches per object, helping to make sure we don’t get stuck in a

local minimum. NRUNS sets the number of searches, while INIT and INDINI set where each

should start. By default NRUNS, INIT and INDINI are set to 1, and therefore there is only one

search starting at the center of the grid. Setting INIT to 0 will change the behavior of the code

to start the searches at the values in pfile.

When NRUNS is set to an integer larger than 1 and INIT is set to 1 the code will start

each of the NRUNS searches at a different location chosen at random values of the parameters.

This can be changed to start at specific locations by setting INDINI to an array of values, each

corresponding to the number of initializations in a given dimension. For example, if we are

working with a three-dimensional problem and want to perform 8 searches evenly distributed

over the parameter space, we should set NRUNS=8, and INDINI= 2 2 2. Similarly, perform 4
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searches for each input object starting at points equidistant from the center in the first and third

dimension, but at the central value of the grid for the second parameter we would set instead

INDINI= 2 1 2.

8.4 Excluding data from the fittings

We may be in the situation that we have missing data for some objects (e.g. a piece of the

spectrum affected by severe distortions), or simply that our data span a wider wavelength range

than our model grid. In those cases we can avoid including the missing regions in the χ2

evaluation by setting the input fluxes to zero, or similarly, make their contribution to the χ2

negligible by inflating the uncertainties for those data points.

8.5 Smoothing and interpolating models on the fly

FERRE, by default, expects the wavelengths of the model grid (those at which the model fluxes

have been sampled) and the observations to match. If they don’t, we can set the keyword

WINTER to 1 or 2, and perform linear interpolations on-the-fly. For this keyword to work, we

need of course to know the wavelengths of the data in the input flux file ffile (see Table 2;

those for the model grid are coded in its header). Needless to say, it is of course preferred to

interpolation the noiseless models (WINTER=2) than the data.

If our spectral line spread function (LSF) depends on wavelength, time, slit position, etc. the

best solution is to have a model grid with a resolutiison higher than that of the data, performing

a smoothing with the right LSF on the fly. This can be achieved by setting LSF to the right

value, passing the appropriate information through lsffile. The choices are as follows:

• 0 – no LSF convolution (default)

• 1 – 1D (independent of wavelength), one and the same for all spectra

• 2 – 2D (a function of wavelength), one and the same for all

• 3 – 1D and Gaussian (i.e. described by a single parameter, its width), one for all objects

• 4 – 2D and Gaussian, one for all objects

• 11 – 1D and particular for each spectrum

• 12 – 2D and particular for each spectrum

• 13 – 1D Gaussian, but particular for each spectrum

• 14 – 2D Gaussian and particular for each object.

The format of the lsffile depends on the LSF case. Of course there is no such file for

LSF=0. When the LSF is Gaussian, the same for all wavelengths (1D), and the same for all

targets (LSF=3), then only the width of the Gaussian is needed, i.e. the lsffile will only

contain a single number: the FWHM of the Gaussian in units of pixels of the library. When it

is Gaussian, 1D, and depends on the target, the LSF file should have a single number per line.

When it is 2D (wavelength dependent) and Gaussian, but common to all targets, the LSF file

should contain a single line, with as many columns as wavelengths in the grid (NPIX), giving

the FWHM values.

The most complex cases are when the LSF is not Gaussian, but it is specified numerically,

as an array. When it is 1D and common for all targets, the LSF file should have a single line

with the actual LSF, sampled on the same pixel step as the library. When it is 2D and common
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to all targets, the LSF file should give a 2D array with as many columns as wavelengths in the

library, and with the LSF for each wavelength given in each column. Finally, when it is 2D

and particular for each target the LSF file should contain a series of 2D arrays with the same

format just described for each object, one after another. For example, if the LSF is described

numerically as an array of 10 pixels and depends on wavelength for a library with NPIX=120

wavelengths, the LSF for a series of 3 targets will contain 3 2D arrays in a row, each written to

the file with 120 columns and 10 lines. Such a file will have 120 columns and 30 lines.

The sampling in wavelength/velocity space for the LSF must be exactly the same as the

library’s. Smoothing and interpolation can be used in combination.

8.6 Multithreading

By default the execution of FERRE is sequential, it analyzes all the targets in the input files

in the order given in those files. However, the code implements parallelization over multiple

cores in a shared-memory machine using OpenMP. When the keyword NTHREADS is set to

a value higher than 1, the list of targets will be split roughly equally among n threads and run

in parallel. The output files will have an order different from the input ones while the code is

running, but before finishing the execution FERRE will sort them out.

The code performance is usually limited by the speed to access memory (or disk), and

therefore the multithreading execution gives only close-to-linear speedups for low values of n,

and in general it is not useful to push n beyond a few, and keeping always n smaller than the

number of available cores. NTHREADS can be set to 0 for the code to use all the available

cores in a processor.
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33. Brown, W. R., Kilic, M., Allende Prieto, C., Gianninas, A., & Kenyon, S. J. 2013, ApJ,

769, 66
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