

The First Stars and Galaxies: Challenges for the Next Decade

March 8-11, 2010 Austin, Texas

The Pop III/II Transition

Raffaella Schneider

INAF/Osservatorio Astrofisico di Arcetri

What are the minimal conditions for the formation of the first low-mass long-lived stars?

cooling by metals fine-structure lines

Omukai (2000); Bromm et al. (2001); Schneider et al. (2002); Bromm & Loeb (2003); Santoro & Shull (2006); Jappsen et al. (2007); Smith, Sigurdsson & Abel (2008); Jappsen et al. (2009); Hocuk & Spaans (2010)

cooling by dust grains thermal emission

Schneider et al. (2003), (2006); Omukai et al. (2005); Tsuribe & Omukai (2006); Clark, Glover & Klessen (2008)

the role of metals

* Bromm, Ferrara, Coppi & Larson (2001)

SPH simulation isolated halo with $M_{halo} = 2 \times 10^6 M_{sun}$ at z = 30 no H_2 and only metal-line cooling (C, N, O, Fe, S, Si)

Distinguishing between different coolants

 $[A/H] = \log_{10}(N_A/N_H) - \log_{10}(N_A/N_H)_{\odot}$

★ Bromm & Loeb (2003) one-zone model CII (158 µm) and OI (63, 145 µm) line cooling initial conditions: $T_c=200 \text{ K} \text{ n}_c=10^4 \text{ cm}^{-3}$ $\begin{bmatrix} C/H \end{bmatrix}_{\text{orit}} \cong -3.5 \pm 0.1 \qquad \begin{bmatrix} 0/H \end{bmatrix}_{\text{orit}} \cong -3.02 \pm 0.2$ ★ Santoro & Shull (2006) CII (158 µm), OI (63, 145 µm), SiII (35 µm), FeII(26, 35 µm) line cooling

 $[C/H]_{crit} \approx -3.48 \qquad [O/H]_{crit} \approx -3.78$ $[Si/H]_{crit} \approx -3.54 \qquad [Fe/H]_{crit} \approx -3.52$ $(T_{free})^{3/2} (R_{H})^{-1/2}$

Fragment masses: $M_{\rm J} = (700 \ M_{\odot}) \left(\frac{T_{\rm frag}}{200 \ \rm K}\right)^{3/2} \left(\frac{n_{\rm H}}{10^4 \ \rm cm^{-3}}\right)^{-1/2}$ $M_{\rm J,C} \approx 1000 \ \rm M_{sun}$ $M_{\rm J,O} \approx 90 \ \rm M_{sun}$ $M_{\rm J,Si} \approx 130 \ \rm M_{sun}$ $M_{\rm J,Ee} \approx 50 \ \rm M_{sun}$

Numerical simulations with H_2 and metal line cooling

★ Smith & Sigurdsson (2007)

3D AMR simulation cosmological initial conditions 5×10^5 Msun halo at z = 18 No UV background is assumed: cooling from H2, CI (370µm, 610µm), OI, SiII, FeII and SI (25 µm)

multiple clump formation when $10^{-4} \, \rm Z_{sun} < Z_{cr} \le 10^{-3} \, \rm Z_{sun}$

is this enough to mark a shift from the primordial to a modern IMF?

dependence on the initial conditions

★ Jappsen et al. (2007; 2009a; 2009b)

3D SPH simulation molecular and atomic fine structure line cooling

(1) Cold initial conditions: isolated halo with $M_{halo} = 2x10^6 M_{sun}$ at z = 30 (same as in Bromm et al. 2001)

dependence on the initial conditions

★ Jappsen et al. (2007; 2009a; 2009b)

3D SPH simulation molecular and atomic fine structure line cooling

(2) Warm initial conditions: isolated halo with $M_{halo} = 7.8 \times 10^5 M_{sun}$ at z = 25 in a fossil HII region

What are the minimal conditions for the formation of the first low-mass long-lived stars?

cooling by metals fine-structure lines

Omukai (2000); Bromm et al. (2001); Schneider et al. (2002); Bromm & Loeb (2003); Santoro & Shull (2006); Jappsen et al. (2007); Smith, Sigurdsson & Abel (2008); Jappsen et al. (2009); Hocuk & Spaans (2010)

cooling by dust grains thermal emission

Schneider et al. (2003), (2006); Omukai et al. (2005); Tsuribe & Omukai (2006); Clark, Glover & Klessen (2008)

Christlieb et al 2002,2004, 2008

Metallicity Distribution Function

HK+HES sample (2756 stars [Fe/H] < -2)

Salvadori, Schneider & Ferrara (2007)

Nature 422 (2003), 869-871 (issue 24 April)

LOW-MASS RELICS OF EARLY STAR FORMATION

R. Schneider * [†], A. Ferrara [‡], R. Salvaterra[‡], K. Omukai [§] and V. Bromm [¶]

the role of dust grains

★ Schneider et al. (2002; 2003; 2006), Omukai et al. (2005)

One-zone model with simplified dynamics but detailed chemical and thermal evolution (478 reactions for 50 species) Molecular cooling (H_2 , HD, H_2O , OH) metal line cooling (CI, CII, OI) Dust grains (H_2 formation, cooling via thermal emission)

solar composition, present-day dust properties $(M_{dust}/M_{met} \approx 0.47)$

simulations of dust-induced fragmentation

★ Tsuribe & Omukai (2006)

★ Clark, Glover & Klessen (2008)

 $Z=10^{-5} Z_{sun} \epsilon=2$

-20 -10 0

x[AU]

10 20 -10 -5 0

-20 0 20

x[AU]

formation of a cluster of stars with $M_{\rm ch}\!\sim\!\!1~M_{\rm sun}$ at Z_{cr} = 10⁻⁵ Z_{sun}

simulating the collapse in the presence of the CMB field

* Smith et al. (2008)

★ Jappsen et al. (2009a,b)

thermal evolution with metals, dust & the CMB

★ Schneider & Omukai (2010)

minimal conditions for the first low mass star formation

minimal conditions for the first low mass star formation

 $10 \ \mathrm{M_{sun}}$

 $1 \ \mathrm{M_{sun}}$

 $0.1 \ \mathrm{M_{sun}}$

ightarrow 0.01 $m M_{sun}$

chemical feedback

Pop III stars can form at late epochs if pockets of $\rm\,Z < Z_{cr}$ gas are present

(i) transport of metals by outflows

chemical feedback

*<u>semi-analytic studies</u>

(Scannapieco et al. 2003; MacKey et al. 2003; Schneider et al. 2005; Furlanetto & Loeb 2005; Grief & Bromm 2006; Whythe & Cen 2007; Trenti & Stiavelli 2009)

Scannapieco, Schneider & Ferrara (2003)

Pop III to Pop II/I transition is extended in time

PopIII stars contribute to SFR at z < 10

Schneider, Salvaterra, Ferrara & Ciardi (2005)

chemical feedback

*<u>semi-analytic studies</u>

(Scannapieco et al. 2003; MacKey et al. 2003; Schneider et al. 2005; Furlanetto & Loeb 2005; Grief & Bromm 2006; Whythe & Cen 2007; Trenti & Stiavelli 2009)

Whythe & Cen (2007)

mini-halos as repositories of pristine gas

Cen & Riquelme (2008)

two populations of metal-free stars

Press-Schechter like formalism combined with analytic recipes for chemical and radiative feedback

killed by chemical fdbk due to SELF-ENRICHMENT

two populations of metal-free stars

Press-Schechter like formalism combined with analytic recipes for chemical and radiative feedback

due to SELF-ENRICHMENT

The Pop III/II transition on cosmic scales

*<u>numerical studies</u>

SPH SIMULATION (metallicity-dependent IMF)

Tornatore, Ferrara & Schneider (2007)

HYBRID CODES dark matter simulation+semi-analytic gas physics

Trac & Cen (2007) Trenti, Stiavelli & Shull (2009)

numerical simulations

*Tornatore, Ferrara & Schneider (2007)

GADGET-2 with improved treatment of chemical enrichment (Tornatore et al 2007)

Reference run:

$$Z_{cr} = 10^{-4} Z_{sun}$$

 $L_{box} = 10h^{-1} Mpc$ $N_p = 2 \times 256^3$ $M_p = 3.6 \ 10^6 \ h^{-1} M_{sun}$

spatial distribution of metals

*Tornatore, Ferrara & Schneider (2007)

mass-averaged metallicity

fraction of metals from Pop III stars

Pop III stars appear to be hidden in the outskirts of collapsing structures

A fraction of observable z>3 objects may be powered by radiative (LAEs, LBGs) or mechanical (PISN) input of Pop III stars

properties of Pop III star forming sites

- \star pure halos: only Z < Z_{cr} gas/stars
- mixed halos: both $Z < Z_{cr}$ and $Z > Z_{cr}$ gas/stars

Schneider et al. in prep

resolving the first protogalaxies

Ricotti, Gnedin & Shull (2002, 2008); Wise & Abel (2007, 2008); Whalen et al. (2008); Greif et al. (2008, 2010)

resolving the first protogalaxies

Ricotti, Gnedin & Shull (2002, 2008); Wise & Abel (2007, 2008); Whalen et al. (2008); Greif et al. (2008, 2010)

Observational searches in the Local Universe: stellar archaeology

GAMETE (GAlavy MErger Tree & Evolution)

Salvadori, Schneider & Ferrara (2007)

Metallicity Distribution Function of Halo stars

statistics of second-generation (2G) stars: enriched by yields of PopIII SN

Beers & Chris	tlieb (2006) sample
1150 stars with -4 < [Fe/H] < -2.5	
$ m Z_{cr}/ m Z_{sun}$	Number of 2G stars
10-4	1.3
10-6	0.3
0	6x10 ⁻²

conclusions

* minimal conditions for the first low-mass stars may require dust-cooling:

