Population III star formation during and after the reionization epoch

Michele Trenti University of Colorado at Boulder

First Stars and Galaxies, 10 March 2010

Outline

 Star Formation During the Dark Ages:
From Population III stars (metal free) to the First Galaxies (metal enriched)

PopIII/PopII transition in the Milky Way

Formation history of extremely metal poor gas and consequences for
Galactic Archeology

The very first PopIII stars

- PopIII stars first luminous objects in the Universe
- PopIIIs begin forming in minihalos (M<10⁶ Msun) cooled by H₂ at very early times (z>60 - Trenti & Stiavelli 2007)

Radiative feedback self-regulates their SFR after z~35 (Lyman Werner Photons photodissociate H₂): End of PopIII.1!

Trenti & Stiavelli (2009)

Population III star formation

Metal enriched star formation takes over at z<25 !

Still the bulk of metal free stars are formed at z<20

PopIIIs can form at yet lower redshift in metal-free halos with $T_{vir} \sim 10^4$ K (M~10⁸ Msun, Ly α cooling possible)

Trenti & Stiavelli (2009)

From First Stars to First Galaxies

- For detailed modeling at z<10, cosmological simulations are required
- Significant large scale structure present
- Coexistence of PopIII stars (in voids) and First Galaxies (in overdensities/protoclusters)
 - see Massimo Stiavelli's talk

Structure at early times: density projection

PopIII stars at "low" redshift

- PopIII/PopII star formation regulated by: — radiative feedback (LW+ionizing)
 - chemical feedback
 - self-enrichment
 - metal outflows (not possible with analytical merger tree codes)
 - All these ingredients are included in our simulations

Trenti , Stiavelli & Shull (2009)

PopIII stars at "low" redshift

- Upper limit to PopIII SFR is given by self enrichment only
- Wind outflows from dwarf-like galaxies (M_{DM}~10⁹ Msun) further reduce supply of metal-free gas
 - metal free star formation at "low" (z~6) redshift is possible, but very rare: ~1 PopIII Gpc ⁻³ yr ⁻¹ (see also Tornatore et al. 2007)

Population III halo formation rate

Trenti, Stiavelli & Shull (2009)

PopIII supernova rate

- PopIII stars at z>5 are very faint MAB~38
 - little or no chance of direct imaging
- SN rate low (< 1/100 deg ⁻² yr ⁻¹)
 - but sources may be "bright" (MAB~26)
 - LSST might have a chance to detect them at z~5

PopIII Supernova rate

Trenti, Stiavelli & Shull (2009)

Chemical enrichment of the IGM

When and how is gas enriched to Extremely Metal Poor (Z~10 ^{-3.5} Zsun) level?

Genetic Enrichment

Winds

Cosmological simulations are needed to address this question

Extremely Metal Poor Gas

- Self-Enrichment from PopIII sources gives Z~10^{-3.5} Zsun
 - Peak at z~10
- Metal outflows from Pop II galaxies contaminate gas in nearby non selfenriched halos at z < 15(also to $Z \sim 10^{-3.5}$ Zsun)
 - Peak at z~6

Trenti & Shull (2010)

Extremely Metal Poor Gas

- The majority of the EMP gas is enriched by PopII stars, not PopIII
- In addition, PopIIIs in minihalos only enrich ~10% of the EMP gas (at z>14)
 - EMP star abundance patterns probe IMF at z<10, not PopIII.1

EMP Gas in the Milky Way

- Milky Way progenitors live within overdensity at high-z, different from average region of the Universe
- Run series of simulations constrained to contain MW-like halo at their center (with N=1024³, resolve minihalos)
- Star formation history and metal enrichment shifted at higher z, but qualitatively similar
 - most EMP gas still enriched by PopII winds

Trenti & Shull (2010)

Summary

- The first Gyr after the Big Bang is characterized by a complex interplay between metal free (first stars) and metal enriched (first galaxies) star formation
 - PopIII/PopII transition highly inhomogenous: at z~5 metal free gas pockets still exist, but very low number density
- Pair Instability SNe at z<6 best chance to witness PopIII stars if IMF allows them
- Majority of EMP gas is produced at z<10
 - Galactic archeology probes primarily "low" redshift PopIII/PopII transition, not PopIII formation in minihalos, nor PopIII.1

PopIII stars at "low" redshift

Convergence tests:

- Cosmological simulation and analytical model agree well for self-enrichment scenario (no winds)
- To implement sub-grid physics, DM halos need to be resolved with N>100-400 particles

see Trenti et al. (2010), ApJ, 711, 1198

PopIII SFR: analytical model vs. cosmological simulation

Trenti , Stiavelli & Shull (2009)

Resolution study: PopIII SFR

If minihalos are not resolved, there is an artificial peak in PopIII SFR at z~13

> 10⁸ Msun halos appear chemically pristine without resolving progenitors

Trenti, Stiavelli & Shull (2009)

First Galaxies

Most massive galaxy in N=2x1536³(ENZO), I=25Mpc/h at z=8.5

Merging rapidly assembles the first galaxies: by z~8 halos with Mhalo>10¹¹ Msun are possible

Number density ~10⁻⁴ Mpc³

Typical WFC3/IR HST deep field probes 10⁴ Mpc³ at z~8

Ab initio models/simulations meet observations!

2

r [Kpc physical]

0

Trenti et al, in prep.

4

Clustering

PopIII sources and the gas they enrich live in low bias regions

EMP gas enriched by winds lives in high bias regions

Two point correlation function at z=9.5 10000 K< Tvir < 20000 K

Stiavelli & Trenti (2009)

PopIII formation with LW radiation

Our analytical model for LW background effects compares well with AMR simulations of PopIII formation

Figures from O'Shea & Norman (2008)

