The Pop III IMF: A Progress Report

Michael L. Norman University of California, San Diego & San Diego Supercomputer Center

Disclaimer

- Notion of Pop III IMF is not well-defined
 - We don't observe Pop III stars
 - We believe Pop III stars formed in isolation in minihalos at high redshift.....although some may be born binary stars
 - DM halos with enough mass to form a cluster of Pop III stars may be chemically enriched, and therefore form Pop II stars
- What is the sample we are averaging over?
 - Is there such a thing as a Pop III galaxy?
 - If not, we can define as a cosmic average <IMF(z)>
- Are we allowed to average over redshift too?
 - Duration of Pop III epoch is unknown
 - we can predict when it starts, but not when it ends

Nevertheless

 Significant progress has been made on better estimating the characteristic masses of Pop III stars from simulations and analytic theory

Outline

- Nomenclature: Pop III.1 and Pop III.2
- Formation of Pop III.1 protostars
- Formation of Pop III.2 protostars
- Final stellar masses (progress!)
 - accretion, stellar evolution, and radiative feedback
 - fragmentation and binarity
- A scenario for the rise and fall of Pop III
- How simulations need to evolve

Nomenclature

- Pop III.1
 - Gas of primordial composition
 - Initial conditions purely cosmological

- Pop III.2
 - Gas of primordial composition
 - Initial conditions modified by radiative or kinetic feedback of Pop III.1 stars, but not chemical feedback

Formation of Pop III.1 protostars

Bromm et al. 1999, 2002; Abel et al. 2000, 2002; Yoshida et al. 2003, 2006, 2008, 2009; O'Shea & Norman 2006, 2007, 2008; Turk et al. 2008, 2009

primordial matter power spectrum

- hierarchical structure formation
- \rightarrow DM minihalo (M_{dyn} ~ 10⁶ M_s, z~20)
- \rightarrow primordial cloud ($\dot{M}_{cl} \sim 10^4 M_s$)
- \rightarrow H₂ formation and cooling
- \rightarrow collapsing core (M_{core} ~ 10³ M_s)
- \rightarrow accreting protostar (M_{ps} ~ 10⁻² M_s, m*~ 10⁻² M_s/yr)
- Stellar evolution, accretion, and radiative feedback
- →endpoints (supernovae and black holes)

Mass variance in spheres enclosing mass M for concordance $\Lambda {\rm CDM}$

Figure 2: The projected gas distribution at z = 17 in a cubic volume of $600h^{-1}$ kpc on a side. The cooled dense gas clouds appear as bright spots at the intersections of the filamentary structures. From Ref. (17).

Yoshida et al. (2003)

H₂ formation: the key to Pop III star formation

$$\mathbf{H} + e^- \rightarrow \mathbf{H}^- + \gamma,$$

 $\mathbf{H}^- + \mathbf{H} \rightarrow \mathbf{H}_2 + e^-.$

Catalytic reaction becomes efficient above 2000K

Cooling becomes efficient above f(H2)~10⁻⁴

Yoshida et al. (2003)

Pop III Star formation: the current paradigm

Range of resolved scales = 10^{10}

From Abel, Bryan and Norman 2002, Science, 295, 93

Evolution of cloud core

Abel, Bryan & Norman (2002)

Origin of mass scale: H₂

- H₂ cooling rate (per particle) becomes independent of density above n=10⁴ cm⁻³ ("critical density")
- 0-1 ro-vib. excitation temperature =590K
 - T_{min}~200K
- Cloud core "loiters" at these conditions until a Jeans mass of gas accumulates, and then it collapses

$$M_{\rm J} \approx 500 M_{\odot} \left(\frac{T}{200}\right)^{3/2} \left(\frac{n}{10^4}\right)^{-1/2}$$

Stellar Density Achieved!

Yoshida et al. (2008), Turk et al. (2008)

slide courtesy N. Yoshida

A hyper-accreting protostar

Re-formulate the problem as gas accretion onto a hydrostatic core, using the mass accretion rate from our simulation.

Compute the evolution of the mass and radius.

slide courtesy N. Yoshida

slide courtesy N. Yoshida

Formation of Pop III.2 protostars

Machacek et al. 2001, 2003; O'Shea et al. 2005; Ahn & Shapiro 2006; Yoshida et al. 2007; Wise & Abel 2008; Whalen et al. 2008

- Initial conditions disturbed by radiative feedback from a Pop III.1 star
 - EUV radiation pre-ionizes gas, which recombines and cools via H₂ and HD
 - local
 - FUV radiation photodissociates H₂, delays cooling and collapse
 - local or global (Lyman-Werner background)

Pop III star formation in a relic HII region (O'Shea et al. 2005, Yoshida et al. 2007)

Abel, Wise & Bryan (2007)

Yoshida et al. (2007)

Origin of Pop III.2

Evolution of the FUV background Wise and Abel (2005)

FUVB delays collapse, and raises core temperature and accretion rate (O'Shea & Norman 2008)

Implies Pop III stars formed at lower redshift are more massive

Origin of Pop III.2

Final Stellar Masses

- Pop III.1 (III.2) stars enter main sequence at M~100 (40) Ms while they are still accreting mass from their birth cloud (~1000 Ms)
- How massive can they become?
 - Mass loss due to stellar winds presumed negligible (Baraffe et al. 2001, Kudritzki 2002)
 - Radiation pressure on grains not a factor
 - Consider other radiative feedback effects

Final Pop III Masses: Radiative Feedback

- Analytic models of McKee & Tan (2008)
- Radiative feedback effects from accreting Pop III.1 stars
 - Photodissociation
 - Ly α pressure
 - Ly C pressure
 - HII region breakout
 - accretion disk photoevaporation
- Conclude stars as massive as 100 M_s can form by disk accretion

breakou

McKee & Tan (2008)

Feedback-limited accretion McKee & Tan (2008)

Final Pop III Masses: Stellar Evolution

- Ohkuba et al. (2009) have used accretion histories from Yoshida et al. (2006, 2007) to carry out Pop III stellar evolution calculations through to end points
- Parameterize angular momentum, radiative feedback effects of McKee & Tan (2008)

Final Masses and Fates

OHKUBO ET AL.

Vol. 706

Models	Lifetime (yr)	Final Mass $M_f(M_{\odot})$	CO Core Mass (M_{\odot})	Final Fate
Y-1	2.3×10^{6}	915	370	Core-Collapse
Y-2	2.4×10^{6}	710	330	Core-Collapse
Y-3	2.5×10^{6}	610	275	Core-Collapse
Y-4	2.9×10^{6}	385	170	Core-Collapse
Y-5	3.1×10^{6}	275	123	PISN
YII	5.5×10^{6}	40	14	Core-Collapse
M-1	2.2×10^{6}	321	155	Core-Collapse
M-2	3.1×10^{6}	135	58	Core-Collapse
M-3	4.5×10^{6}	57	22	Core-Collapse

Table 2 Stellar Lifetime, Final Mass, CO Core Size, and Final Fate for Each Model

Ohkuba et al. (2009) summary

 Ignoring radiative feedback, Pop III.1 stars die as corecollapse very massive stars (CVMS) in the range 300 – 1000 Ms, depending on angular momentum of the cloud

Produce IMBH and little chemical enrichment

 Including radiative feedback, Pop III.1 stars die as CVMS in the range 60-320 Ms, depending on angular momentum of the cloud

Produce IMBH and some chemical enrichment

 Pop III.2 stars die as core-collapse supernova with mass ~ 40 Ms

Produce stellar BH and some chemical enrichment

Fragmentation by chemo-thermal instability?

- Silk (1983) predicted that onset of 3-body H2 formation would trigger chemo-thermal instability and fragment primordial cloud into small objects
- This has never been observed in ultra-high resolution 3D simulations (Yoshida et al. 2006, Turk et al. 2008)

FIGURE 5. Evolution of chemo-thermal instability in the collapsing Pop III cloud core. A growth parameter >2 is required for the core to fragment into multiple pieces. The core does not fragment, but produces a single protostellar seed which accretes the massive envelope. See Yoshida et al. (2006) for more details.

Growth parameter = t_{dyn}/t_{chem}

Binary Fragmentation

- Turk, Abel, & O'Shea (2009) found one in five AMR Pop III.1 simulations to fragment into a binary system
- Central 50 Ms has two clumps separated by 800 AU with mass ratio 2:1
- Seems due to rotation (bar instability) and not chemo-thermal instability
- Stacy, Greif & Bromm (2010) see similar results

"runaway collapse" bias against finding fragmentation

Turk, Abel & O'Shea (2009)

Princeton Twist Survey (Turk et al.)

Rise and Fall of Pop III: A schematic

Possible Evolution of Pop III IMF (very speculative!)

How Numerical Simulations Need to Evolve

- Individual halo scale
 - Simulate radiative feedback during accretion phase (e.g., Yorke & Sonnhalter 2002; Krumholz, Klein & McKee 2007)
 - 3D radiation hydrodynamics+ionization+chemistry
 - accreting evolving protostar "particle"
 - →implicit numerical methods
 - Simulate chemical enrichment and transition to Pop II
- Cosmic scale
 - Large boxes; high resolution in rare peaks to study local and global radiative feedbacks
 - 3D radiation hydrodynamics+ionization+chemistry
 - Calibrated source population subgrid model (FUV, EUV, X)
 - → petascale computational platforms

A Huge Unigrid: 6400³ Enzo

6400³ cells/particles, 80 Mpc box, DM+Gas+SF/FB

93,000 cores, Kraken

Deep AMR simulation of highly biased region inside 30 Mpc box Wise, Norman, Abel, O'Shea in prep

 $M_{dm} = 3 \times 10^4 Ms$

Min(∆x)= 11pc@z=6

Pop II SF/FB model of Wise & Cen (2009)

Metal enrichment and metal-dependent cooling

adaptive ray tracing radiative transfer

WATCH THIS SPACE

Nonstandard Models: WDM

model, in which gas clouds are formed in the pronument manesary structure panels). From Gao & Theuns 2007, Science.

Gao & Theuns (2007)

O'Shea & Norman (2006)