
The Pop III IMF: A Progress 
Report

Michael L. Norman
University of California, San Diego

&
San Diego Supercomputer Center



Disclaimer
• Notion of Pop III IMF is not well-defined

– We don’t observe Pop III stars

– We believe Pop III stars formed in isolation in minihalos at 
high redshift……although some may be born binary stars

– DM halos with enough mass to form a cluster of Pop III 
stars may be chemically enriched, and therefore form Pop 
II stars

• What is the sample we are averaging over?

– Is there such a thing as a Pop III galaxy?

– If not, we can define as a cosmic average <IMF(z)>

• Are we allowed to average over redshift too?

– Duration of Pop III epoch is unknown

– we can predict when it starts, but not when it ends



Nevertheless

• Significant progress has been made on better 
estimating the characteristic masses of Pop III 
stars from simulations and analytic theory



Outline

• Nomenclature: Pop III.1 and Pop III.2

• Formation of Pop III.1 protostars

• Formation of Pop III.2 protostars

• Final stellar masses (progress!)
– accretion, stellar evolution, and radiative feedback

– fragmentation and binarity

• A scenario for the rise and fall of Pop III

• How simulations need to evolve



Nomenclature

• Pop III.1
– Gas of primordial composition
– Initial conditions purely cosmological

• Pop III.2
– Gas of primordial composition
– Initial conditions modified by radiative or kinetic 

feedback of Pop III.1 stars, but not chemical feedback



Formation of Pop III.1 protostars
Bromm et al. 1999, 2002; Abel et al. 2000, 2002; Yoshida et al. 2003, 

2006, 2008, 2009; O’Shea & Norman 2006, 2007, 2008; Turk et al. 
2008, 2009

primordial matter power spectrum
hierarchical structure formation
DM minihalo (Mdyn ~ 106 Ms, z~20)
primordial cloud    (Mcl ~ 104 Ms)
H2 formation and cooling
collapsing core     (Mcore ~ 103 Ms)
accreting protostar (Mps ~ 10-2 Ms, m*~ 10-2 Ms/yr)
stellar evolution, accretion, and radiative feedback
endpoints  (supernovae and black holes)



Mass variance in spheres enclosing mass M for 
concordance CDM

Yoshida (2009)

rare peaks

typical fluctuations



Yoshida et al. (2003)



H2 formation: the key to Pop III star formation

Yoshida et al. (2003)

Cannot cool

Can cool

Catalytic reaction 
becomes efficient 
above 2000K

Cooling becomes 
efficient above 
f(H2)~10-4



Pop III Star formation: the current paradigm

From Abel, Bryan and Norman 2002, Science, 295, 93

Range of resolved scales = 1010



Evolution of cloud core

Abel, Bryan & Norman (2002)

Z=19
+     9 Myr
+ 300 Kyr
+   30 Kyr
+     3 Kyr
+  1.5 Kyr
+ 200 yr (z=18.18)

Gravitationally unstable

Gravitationally stable

HI core

H2 core



Origin of mass scale: H2

• H2 cooling rate (per particle) 
becomes independent of 
density above n=104 cm-3 

(“critical density”)

• 0-1 ro-vib. excitation 
temperature =590K
– Tmin~200K

• Cloud core “loiters” at these 
conditions until a Jeans 
mass of gas accumulates, 
and then it collapses



Stellar Density Achieved!
Yoshida et al. (2008), Turk et al. (2008)
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Formation of Pop III.2 protostars
Machacek et al. 2001, 2003; O’Shea et al. 2005; Ahn & Shapiro 

2006;  Yoshida et al. 2007; Wise & Abel 2008; Whalen et al. 2008

• Initial conditions disturbed by radiative
feedback from a Pop III.1 star

– EUV radiation pre-ionizes gas, which recombines 
and cools via H2 and HD 

• local

– FUV radiation photodissociates H2, delays cooling 
and collapse

• local or global (Lyman-Werner background)



Pop III star formation in a relic HII region
(O’Shea et al. 2005, Yoshida et al. 2007)

Log(T)

Yoshida et al. (2007)Abel, Wise & Bryan (2007)

Gas cooled by 
HD below 200K



Origin of Pop III.2

III.1

Neutral
H2 formation

III.1

ionized
H2 destruction

III.2
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recombining
H2 & HD formation

II



Evolution of the FUV background
Wise and Abel (2005)



FUVB delays collapse, and raises core temperature 
and accretion rate (O’Shea & Norman 2008)

Mvir

zcoll

FLW=10-24

FLW=10-23

FLW=10-22

FLW=5x10-23

Implies Pop III stars formed at lower redshift are more massive

105

106



Origin of Pop III.2

III.2

III.2

III.2

ionized
H2 & HD destruction

III.2

III.2

III.2

Patchy ionized
H2 & HD dissociated

III.2
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III.2

LW background
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Final Stellar Masses

• Pop III.1 (III.2) stars enter main sequence at 
M~100 (40) Ms while they are still accreting 
mass from their birth cloud (~1000 Ms)

• How massive can they become? 

– Mass loss due to stellar winds presumed negligible 
(Baraffe et al. 2001, Kudritzki 2002)

– Radiation pressure on grains not a factor

– Consider other radiative feedback effects



Final Pop III Masses: Radiative Feedback

• Analytic models of McKee 
& Tan (2008)

• Radiative feedback effects 
from accreting Pop III.1 
stars
– Photodissociation

– Ly pressure

– Ly C pressure

– HII region breakout

– accretion disk 
photoevaporation

• Conclude stars as massive 
as 100 Ms can form by disk 
accretion

McKee & Tan (2008)



Feedback-limited accretion
McKee & Tan (2008)

Zero net accretion:

Accretion gain = 
evaporative loss



Final Pop III Masses: Stellar Evolution

• Ohkuba et al. (2009) 
have used accretion 
histories from Yoshida 
et al. (2006, 2007) to 
carry out Pop III stellar 
evolution calculations 
through to end points

• Parameterize angular 
momentum, radiative
feedback effects of 
McKee & Tan (2008)

Pop III.1

Pop III.2



Final Masses and Fates



Ohkuba et al. (2009) summary

• Ignoring radiative feedback, Pop III.1 stars die as core-
collapse very massive stars (CVMS) in the range 300 –
1000 Ms, depending on angular momentum of the 
cloud
– Produce IMBH and little chemical enrichment

• Including radiative feedback, Pop III.1 stars die as CVMS 
in the range 60-320 Ms, depending on angular 
momentum of the cloud
– Produce IMBH and some chemical enrichment

• Pop III.2 stars die as core-collapse supernova with mass 
~ 40 Ms
– Produce stellar BH and some chemical enrichment



Fragmentation by chemo-thermal 
instability?

• Silk (1983) predicted that 
onset of 3-body H2 
formation would trigger 
chemo-thermal instability 
and fragment primordial 
cloud into small objects

• This has never been 
observed in ultra-high 
resolution 3D simulations 
(Yoshida et al. 2006, Turk 
et al. 2008)

Growth parameter = tdyn/tchem



Binary Fragmentation

• Turk, Abel, & O’Shea 
(2009) found one in five 
AMR Pop III.1 simulations 
to fragment into a binary 
system

• Central 50 Ms has two 
clumps separated by 800 
AU with mass ratio 2:1

• Seems due to rotation 
(bar instability) and not 
chemo-thermal instability

• Stacy, Greif & Bromm
(2010) see similar results



“runaway collapse” bias against finding 
fragmentation

Turk, Abel & O’Shea (2009)



Princeton Twist Survey (Turk et al.)



Rise and Fall of Pop III: A schematic
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Log(M/Ms)

321

Pop III.1Pop III.2 HD

Log N(M/Ms)

Possible Evolution of Pop III IMF
(very speculative!)

Pop III.2  LW threshold



How Numerical Simulations Need to Evolve

• Individual halo scale
– Simulate radiative feedback during accretion phase (e.g., 

Yorke & Sonnhalter 2002; Krumholz, Klein & McKee 2007)
• 3D radiation hydrodynamics+ionization+chemistry
• accreting evolving protostar “particle”
• implicit numerical methods

– Simulate  chemical enrichment and transition to Pop II

• Cosmic scale
– Large boxes; high resolution in rare peaks to study local 

and global radiative feedbacks 
• 3D radiation hydrodynamics+ionization+chemistry
• Calibrated source population subgrid model (FUV, EUV, X)
• petascale computational platforms



A Huge Unigrid: 64003 Enzo

• 6400^3 snap

64003 cells/particles, 80 Mpc box, DM+Gas+SF/FB                          93,000 cores, Kraken

DM density
z=17



7.5 Mpc

Deep AMR simulation of 
highly biased region 
inside 30 Mpc box
Wise, Norman, Abel, 
O’Shea in prep

Mdm = 3 x 104 Ms

Min( x)= 11pc@z=6 

Pop II SF/FB model of 
Wise & Cen (2009)

Metal enrichment and 
metal-dependent cooling

adaptive ray tracing 
radiative transfer

gas density
z=24





Nonstandard Models: WDM

Gao & Theuns (2007) O’Shea & Norman (2006)


