Magnetohydrodynamics of Population III Star Formation

Masahiro Machida (NAOJ)

Kazu Omukai (Kyoto-U), Shu-ichiro Inutsuka (Nagoya-u), Tomoaki Matsumoto (Hosei Univ.)

Difference in Magnetic Evolution

Angular Momentum Problem

Most serious problem in the present-day star formation

 $j \sim 10^{21} \text{ cm}^2 \text{s}^{-1}$ (molecular cloud) $\Leftrightarrow j \sim 10^{16} \text{ cm}^2 \text{s}^{-1}$ (Protostar)

Conservation of $J \Rightarrow$ Without J transfer, star is never born

Present-day solution : Protostellar Jet and Binary formation

Primordial Solution: Pop III star rotates with Ω_{ps} ~ 1 s⁻¹? (centrifugal barrier) Global spiral structure? Binary (Turk, Clark at this meeting)? or Magnetically driven Jet? Purpose of this study

We investigate the influence of B on the Population III Star formation, parameterizing cloud's rotation rate and magnetic field strength

In the collapsing primordial gas clouds, B can be amplified without dissipation (Maki & Susa 2002, 2007)

Even if initial B is weak, the amplified B may affect the formation process of Pop. III

Initial Settings

- Spherically Hydrostatic Core (Bonnor-Ebert Sphere)
- m=2 density perturbation (10%)
- Ο Β// Ω

simulations

N −20

20

X Position [pc]

Bromm et al. 2002 -40

Numerical Method

3D Ideal MHD Nested Grid Method (Machida et al. 2005, 2006)

- Grid size: 128 x 128 x 128
- Grid level: I_{max}=31 (I : Grid Level)
- > Total grid number: 128 x 128 x 128 x 31
- Grid generation: Jeans Condition

I =1:
$$L_{box} = 14 \text{ pc}$$
, $n = 10^3 \text{ cm}^{-3}$ (initial)
I =31: $L_{box} = 0.2 \text{ R}_{sun}$, $n = 10^{23} \text{ cm}^{-3}$ (final)
 $\Delta x_{I=31} = 0.0016 \text{ R}_{sun}$

10 orders of magnitude in spatial scale 20 orders of magnitude in density contrast

After Protostar Formation: Jet Driving

Jet Driving

- Proto Pop III forms at n~10²¹ cm⁻³
- Strongly twisted lines $(\tau_{rot} \leq \tau_{collapse})$
- Protostellar Jet is driven from proto-Pop III star

After Protostar Formation: Fragmentation

 β_0 : rot. eng, γ_0 : mag. eng

Final States on the z=0
plane against γ_0 and β_0
(Results of 36 models)

(Results of 36 models)

- Background Colors

 Blue: Fragmentation model
 Red: Non-fragmentation model
 Green: Merger model
 Gray: non-collapsing model
- Fragmentation occurs in model with large β₀ but small γ₀
- Rotation promotes, but mag. field suppresses fragmentation (Klessen's Talk)

Pop III binary: Cloud with large $β_0$ and small $γ_0$

Single Pop III star Cloud with small β_0 and large γ_0

 β_0 : rot. eng, γ_0 : mag. eng

Final Fate of Primordial Magnetized Clouds

□ To investigate the magnetic effect, we calculated the evolution of primordial clouds until proto-Pop III star formation (10³ cm⁻³ < n < 10²³ cm⁻³)

Magnetic field and Jet driving

>Magnetic field can affect the evolution of primordial cloud when $\gamma_0 > 10^{-8}$

 $B > 10^{-9}$ G at n=10³ cm⁻³ (primordial cloud)

B>5x10⁻¹³ G at n=0.01 cm⁻³ (ambient medium)

Fragmentation and binary formation

(See also Tan & Blackman 2004)

>Magnetic field suppresses fragmentation, while Rotation promotes fragmentation

>Binary Pop III star appears when $\beta_0 > \gamma_0$

Angular momentum Problem

- *With weak B*, excess angular momentum is distributed into orbital one
- *With strong B*, Protostellar Jet and magnetic braking transfer *J*

□Further long-term calculations are necessary to determine fates of jet and binary