FSGCON @Austin, Texas 9 Mar 2010

Low-metallicity star formation

Kazu Omukai (Kyoto U.)

Collaborators: Naoki Yoshida (IPMU, Tokyo) Takashi Hosokawa (JPL & NAOJ)

CONTENTS

- Prestellar collapse of low-metallicity clouds thermal evolution and fragmentation properties
- Protostellar evolution by accretion: Upper limit on the stellar mass by stellar feedback

Pop III-II transition

✓ First stars (Pop III stars)
 theoretically predicted to be very massive(>100M_{sun})
 ✓ Stars in the solar neighborhood (Pop I)
 typically low-mass(0.1-1M_{sun})
 Low-mass Pop II stars exist in the halo.

transition of characteristic stellar mass in the early universe from very massive to low-mass (Pop III–II transition)
This transition is probably caused by accumulation of a certain amount of metals and dusts in ISM (critical metallicity)

Fragmentation and thermal evolution

Effective ratio of specific heat $\gamma := dlog p/dlog \rho$

- $\begin{array}{c} \gamma < 1 \text{ vigorous fragmentation,} \\ \gamma > 1 \text{ fragmentation suppressed} \end{array}$
- The Jeans mass at $\gamma \sim 1$ (T minimum) gives the fragmentation scale.

Mfrag=MJeans@Tminimum

γ=0.2

 $\gamma = 1$ (isothermal)

 $\gamma = 1.3$

Li et al. 2003

First stars

Yoshida, KO, Hernquist 2008

(Bromm et al. 1999)

Thermal Evolution of clouds with different Z

K.O., Tsuribe, Schneider & Ferrara (2005)

1D Hydrodynamics

KO, Hosokawa & Yoshida 2010

Spherical symmetry

Radiative processes

- Line: CII, CI, OI, H₂, HD, CO, OH, H₂O escape probability method
- Continuum: dust.gas (e.g., H₂ CIA) variable Eddington factor method gray approximation

Chemical reactions

reduced H, D, C, O network

Reduced chemical network

C network CII \rightarrow CI \rightarrow CO \rightarrow CO₂

non-equilbrium chemistry among 15 species : H, H₂, H⁺, e, D, HD, D⁺, C, CO, CO₂, C⁺, O, OH, H₂O, O₂ O network

 $\begin{array}{c} 0 \rightarrow OH \rightarrow H_2O \\ \rightarrow O_2 \\ \rightarrow CO \rightarrow CO_2 \end{array}$

Evolution until protostar formation

ex. [M/H]=-4

Initial model : Temperature , chemical abundances from one-zone result at 10^4 cm⁻³ Density distribution : critical BE sphere x 1.2

Comparison between 1-D and 1-zone models

1zone model

5

10^{−4}M_{sun}

15

20

10

number density log (n_µ (cm⁻³))

10000

1000

100

10

1

0

temperature T(K)

10

0

5

1D hydro; spherical collapse

10⁻⁴M_{sun}

15

20

10

number density log (n_H (cm⁻³))

Agreement is fairly well. But small differences in low-Z and high density due to higher collapse rate in 1D model. e.g., $t_{dyn} := \rho/(d\rho/dt) \sim t_{ff}/3$ in LP collapse

Thermal Evolution of clouds with different Z

Cooling by dust thermal emission: [M/H] > -5
 H₂ formation on dust : [M/H] > -4
 Cooling by fine-str. lines (C and O): [M/H] > -3

temperature T(K)

1D hydro (spherical)
dust/metal ratio same as local ISM

 $:= \log_{10}(Z/Z_{sun})$

[M/H]

The critical metallicity

How much metallicity (dust) is needed for the low-mass star formation ?

Dust-induced fragmentation

Tsuribe & K.O. (2006; 2008)

$[M/H] = -5.5 (Z = 3 \times 10^{-6} Z_{sun})$

Using T evolution given by 1-zone model

Standard dust

 $|Z_{cr} \sim 10^{-6} - 10^{-6}$

First dust

3D simulation with self-consisitent thermal evolution

Yoshida & KO in prep.

Simulation set-up A NFW sphere (static potential) 5×10^{6} Msun @ z=10; Tvir ~ 2000 K 1 million gas particles Mass resolution at the center ~ 0.004 Msun dust-to-gas ratio scaled by metallicity Z

Results: [M/H]=-5

number density (cm⁻³)

Dust-induced fragmentation

For [M/H]=-5, Rapid cooling by dust at high density (n~10¹⁴cm⁻³) leads to core fragmentation. Fragment mass ~ 0.1 Msun

Protostellar Evolution in the Accretion Phase

Accreting Envelope

(mass set by fragmentation)

Protostar

(initially very small $10^{-2}M_{sun}$)

Shu et al. 1986

Envelope structure at protostar formation

at >AU scale ---- higher Temperature and density for lower-Z

Mass accretion rate

✓ Lower metallicity
 → Higher density
 → Higher accretion rate

Mass accetion rate dM_{*}/dt~10c_s³/G

Protostars in Accretion Phase

Method

(Stahler et al. 1986)

Protostar hydrostatic Eq.s for Stellar Structure + [radiative shock condition] ENVELOPE Stationary Accretion radiative precursor(< R_{ph}) stationary hydro outer envelope (>R_{ph}) free fall

Growth of protostars by accretion

Four Evolutionary Phases: 1. Adiabatic phase

- 2. Swelling
- 3. KH contraction
- 4. Zero-Age Main Sequence (ZAMS)

Accretion time $t_{acc} = M_*/(dM_*/dt)$ KH timescale $t_{KH} = (GM_*^2/R_*)/L_*$

For lower metallicities (= higher accretion rate):

✓Protostars have larger radii

Protostars are more massive at the onset of H burning.

✓No stationary solution during KH contraction for [M/H]<-5</p>

Upper Limit on the stellar mass

Case for mass accetion rate $dM_*/dt \sim 10c_s^3/G$ by one-zone model

Hosokawa & KO 2009

Low metallicity gas
Higher accretion rate
Lower opacity
→ Weaker feedback,
Higher upper mass limit

- Limit by Radiation force
 > 0.01Z_{sun}; 20-100M_{sun}
 Limit by HII region expansion
- $10^{-4}-0.01Z_{sun}$; a few $100M_{sun}$

•No stationary accretion $<10^{-4} Z_{sun}$; 100M_{sun}

Prestellar evolution of low-Z gas and its fragmentation properties.

- Line cooling affects the thermal evolution only at low densities where the Jeans mass is still high (>10-100M_{sun}).
 - Dust cooling causes a sudden temperature drop at high density where $M_{Jeans} \sim 0.1 M_{sun}$, which induces low-mass fragmentation.
 - The critical metallicity for dust-induced fragmentation is $[Z/H]_{cr} \sim -5$

SUMMARY (2)

evolution of low-Z protostars and the upper limit on the mass by stellar feedback

- In low metallicity gas, high temperature in star forming cores results in high accretion rate.
- Lower Z protostars become more massive before the arrival to the MS owing to higher accretion.
- The upper limit on the stellar mass is $20-100M_{sun}$ set by radiation pressure feedback for $>0.01Z_{sun}$, while it is a few $100M_{sun}$ set by expansion of HII regions $<0.01Z_{sun}$.