Emission from the First
Cosmic Explosions

Chris Fryer (LANL), Dan Whalen
(CMU), Lucy Frey (UNM)

» Neutrinos from First Stars (very massive
collapsar has interesting features).

» Uncertainties in calculating photon emission
(problems in assuming equilibrium states)

» Rad-Hydro calculations of Pair-Instability
Supernovae



Progenitor Effects on Neutrinos: Collapse/Bounce+

» Despite differences in
progenitor, the neutrino ? ]
signal from collapse and -
bounce are very similar. 3
g1 i
Fi F Limongi & Chieffi |
2 4 Heger (z=2,)

15 - o '_ ] Heger (z=0) |
g { IIII(E)gll..OIIIIIIOIZIIIIOIGI
g 10 Z . . ,

'E Time (s)
£ Limongi & Chieffi - .
Hoger (22, « Ultimately, the subsequent
| reer@9 1 convective evolution and the
s 1 amount of fallback will cause

o %ew  °°  differences (~20% level).

Time (s)



Massive Stars

Very massive stars evolve

very differently than i =
massive stars, producing > ::}E &H :’;-;ljj:
large proto-black holes that B
take seconds to collapse. |~ 7
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* As the shock breaks out of the star, the high :
pressure at the boundary leads to an incredible MOde“ng Shock
acceleration of the shock (Colgate 1970, Breakout
Matzner & McKee 1999 argued this could for N —
relativistic ejecta). If radiative losses are '
included, the acceleration is much less drama

- But radiative acceleration is also important,
driving the shock front further than pure
hydrodynamics will. Pure hydrodynamics
calculations lead to errors in velocity profiles!

Velocity (10° cm s™!)
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» At breakout, radiation and
matter are not in equilibrium.
For high energy emission,
equilibrium calculations can
lead to large errors.
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More Shock
Breakout
Features

 Even when the
radiation is
trapped, it can
lead the shock —
the shock position
moves faster than
Sedov solution
would predict.

» After breakout,
the radiation
begins to decouple
from the material.
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Slight
modifications in
the radius where
shock break-out
occurs can
dramatically alter
the light curves —
making accurate
analytic estimates
difficult.

Log Luminosity (erg s!)
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Precision Models of

Supernova Spectra
Precision measurements require

advanced codes: Here's than

LANL approach

» Leverage off of LANL’s 1-,2-, and 3-
dimensional Radiation Adaptive Grid
Eulerian (RAGE) code: an AMR code with
flux-limited diffusion radiation transport

 LANL atomic opacities
« Added S, transport for gamma-rays
* Now running production runs in 1-dimension

* Running test runs using Monte-Carlo
thermal transport and 2D — On Roadrunner!

« Studying NLTE effects

« Ideal when shock heating important (can’t
be done in simulations assuming matter/
radiation equilibrium)
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Post-process
Includes detailed e
LANL opacities o

p=8.3x10"10 g cm-3, T=1.5eV _

20 bins per zone Each bin of each
— far side zone has its own
shown mean free
path to the
observer
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Pair
Instability
Shock
Breakout:
X-ray

* The X-ray
outburst (>
100eV) is
brief (hours-
long), just at
breakout.
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Spectra ]

at

Breakout .

The
breakout
spectra
evolve
rapidly as
the front
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* Long term
light-curve
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e Late-time

SpeCtra - — T=1.36d —T=12.1d
Whether the . T=2.49d —T=122d
spectral - —— T=5.17d

features can 38 7 n
be used to ' '
distinguish
explosions
remains to be
seen.

* Need full
parameter
studies with
highly-
resolved 2 I

photospheres T 2000 4000 6000
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For the Future

« Surroundings can matter (in Nature
and in rad-hydro calculations — Fryer et
al. 2009). We need to study the range of
possibilities.

« Spectral features require both high
spatial resolution of the photosphere and
the incorporation of out-of-equilibrium
atom levels. Theory can be coupled to
experiments.

« Multi-dimensional radiation
hydrodynamics with Implicit Monte Carlo
on heterogeneous machines with
Roadrunner eliminates post-process.
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Shock Breakout for First
Stars.

Step 1. estimate the break-
out luminosity and effective
temperature assuming
electron scattering dominates.
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The drop in luminosity is
dominated by a drop In
temperature. This will be
[ _ sensitive to the exact
photospheric radius.

Log Photospheric




The lower metallicity of the first star alters the winds and
hence the fate of these stars.
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