First Stars and Galaxies, Austin, Texas March 8-11, 2010

The end of the Cosmic Dark Ages

- * Standard model of physics
- * Initial conditions from inflation

* Weakly-interacting Cold Dark

Matter

Surprises may signal new physics

How Did the First Stars and Galaxies Form?

Abraham Loeb

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

Preface v Chapter 1. Prologue: The Big Picture 1 1.1 In the Beginning 1 1.2 Observing the Story of Genesis 1 1.3 Practical Benefits from the Big Picture 3 Chapter 2. Standard Cosmological Model 5 2.1 Cosmic Perspective 5 2.2 Past and Future of Our Universe 6 2.3 Gravitational Instability 8 2.4 Geometry of Space 8 2.5 Cosmic Archaeology 10 2.6 Milestones in Cosmic Evolution 13 2.7 Most Matter is Dark 17 Chapter 3. The First Gas Clouds 21 3.1 Growing the Seed Fluctuations 21 3.2 The Smallest Gas Condensations 24 3.3 Spherical Collapse and Halo Properties 26 3.4 Abundance of Dark Matter Halos 29 3.5 Cooling and Chemistry 33 3.6 Sheets, Filaments, and Only Then, Galaxies 35 Chapter 4. The First Stars and Black Holes 37 4.1 Metal-Free Stars 37 4.2 Properties of the First Stars 42 4.3 The First Black Holes and Quasars 44 4.4 Gamma-Ray Bursts: The Brightest Explosions 51 Chapter 5. The Reionization of Cosmic Hydrogen by the First Galaxies 55 5.1 Ionization Scars by the First Stars 55 5.2 Propagation of Ionization Fronts 56 5.3 Swiss Cheese Topology 62 Chapter 6. Observing the First Galaxies 67 6.1 Theories and Observations 67 6.2 Completing Our Photo Album of the Universe 67

WMAP Cosmological Parameters		
Model: lcdm		
Data: all		
$10^{2}\Omega_{b}h^{2}$	=	$2.19^{+0.06}_{-0.08}$
A	=	$0.67^{+0.04}_{-0.05}$
$A_{0.002}$	=	$0.81^{+0.04}_{-0.05}$
Δ_R^2	=	$(20 \times 10^{-10} \pm 1 \times 10^{-10}) \times 10^{-10}$
$\Delta_{\mathcal{R}}^2(k=0.002/Mpc)$	=	$(24 \times 10^{-10^{+1} \times 10^{-10}}) \times 10^{-10}$
h	=	$0.71^{+0.01}_{-0.02}$
H_0	=	$71^{+1}_{-2} \text{ km/s/Mpc}$
ℓ_A	=	303.0 ^{+0.9}
n_s	=	$0.938^{+0.013}_{-0.018}$
$n_s(0.002)$	=	0.938+0.012
Ω_b	=	$0.044^{+0.002}_{-0.003}$
$\Omega_b h^2$	=	0.0220 ± 0.0006
Ω	=	$0.22_{-0.02}^{+0.01}$
Ω_{Λ}	=	0.74 ± 0.02
Ω_m	=	$0.26^{+0.01}_{-0.03}$
$\Omega_m h^2$	=	$0.131^{+0.004}_{-0.010}$
r_s	=	148 ⁺¹ ₋₂ Mpc
b _{SDSS}	=	0.95+0.05
σ_8	=	$0.75^{+0.03}_{-0.04}$
$\sigma_8 \Omega_m^{0.6}$	=	$0.34^{+0.02}_{-0.03}$
A_{SZ}	=	$0.78^{+0.23}_{-0.78}$
t_0	=	13.8 ^{+0.1} _{-0.2} Gyr
au	=	0.069+0.026
θ_A	=	0.594 ± 0.002 °
z_{eq}	=	3135+85
	=	9.3 ^{+2.8} -2.0

The initial conditions of the Universe can be summarized on a single sheet of paper, yet thousands of books cannot fully describe the complex structures we see today...

THE DARK AGES

of the Universe

Astronomers are trying to fill in the blank pages in our photo album of the infant universe

By Abraham Loeb

When I look up into the sky at night, I often wonder whether we humans are too preoccupied with ourselves. There is much more to the universe than meets the eye on earth. As an astrophysicist I have the privilege of being paid to think about it, and it puts things in perspective for me. There are things that I would otherwise be bothered by—my own death, for example. Everyone will die sometime, but when I see the universe as a whole, it gives me a sense of longevity. I do not care so much about myself as I would otherwise, because of the big picture.

Cosmologists are addressing some of the fundamental questions that people attempted to resolve over the centuries through philosophical thinking, but we are doing so based on systematic observation and a quantitative methodology. Perhaps the greatest triumph of the past century has been a model of the universe that is supported by a large body of data. The value of such a model to our society is sometimes underappreciated. When I open the daily newspaper as part of my morning routine. I often see lengthy descriptions of conflicts between people about borders, possessions or liberties. Today's news is often forgotten a few days later. But when one opens ancient texts that have appealed to a broad audience over a longer period of time, such as the Bible, what does one often find in the opening chapter? A discussion of how the constituents of the universe-light, stars, life-were created. Although humans are often caught up with mundane problems, they are curious about the big picture. As citizens of the universe we cannot help but wonder how the first sources of light formed, how life came into existence and whether we are alone as intelligent beings in this vast space. Astronomers in the 21st century are uniquely positioned to answer these big questions.

What makes modern cosmology an empirical science is that we are literally able to peer into the past. When you look at your image reflected off a mirror one meter

SCIENTIFIC AMERICAN 47

The First Dwarf Galaxies Form at z~30

The distribution of matter can be mapped through: (i)Surveys of galaxies (ii)Surveys of the diffuse (intergalactic) gas

molecular hydrogen in Jeans mass objects Ø 10⁵M i

Yoshida et al. 2003

Observing the Stars

Observed Growth of Stellar Mass Budget

Prediction from Barkana & Loeb (2000):

Most SFR at z>10 is in galaxies fainter than 0.25nJy! (*AB>31.4 at 0.6-3.5 micron, an order of magnitude fainter than WFC3/IR sensitivity*)

James Webb Space Telescope: Searching for the First Light

Mirror diameter: 6.5 meter Material: beryllium 18 segments Wavelength coverage: 0.6-28 micron L2 orbit

Launch date: 2014

Extremely Large Telescopes (24-42 meters)

- GMT=Seven mirrors, each 8.4m in diameter
- TMT, EELT segmented 20-40m aperture

Theoretical Simulations of the First Stars

Bromm, Yoshida, Hernquist, & McKee (2009)

Population III Binaries

Turk, Abel, & O'Shea 2009

Stacy, Greif, & Bromm 2009

The Initial Mass Function of Stars Populations I/II

Bestian et al. (2010)

Populations III: Mø de de Geregerature floor

SN 2007bi – a Pair Instability Supernova in a Nearby Metal-Poor Dwarf Galaxy

Nickel mass of ~4-7M₁ (ejecta mass of 100 M₁); kinetic energy of ø 10⁵³ergs
Dwarf galaxy at z=0.128 with M B=-16.3 mag, and 12+[O/H]=8.25

Gal-Yam et al., Nature (arXiv:1001.1156)

Number of ionizing photons (>13.6eV) per baryon incorporated into stars:

Spectral signature of Pop-III stars:

strong UV continuum, helium recombination lines – such as 1640A*(1+z), low metal abundance

Bromm, Kudritzki, & Loeb (2001)

Outflows Driven by Lya Radiation Pressure

• IGM around the mini-halos hosting the first stars

 $M_{?} = 100M_{i}$ $M_{halo} = 10^{6}M_{i}$

Supershells around starburst galaxies

First Galaxies Were Strongly Clustered on Scales of up to ~100 comoving Mpc z=20 Collapse threshold

100 Mpc structure in the simulated distribution of $10^{10}M_{i}$ galaxies at z=6

Munoz, Trac, & Loeb 2009

First Galaxies Were Strongly Clustered on Scales of up to ~100 comoving Mpc z=10 Collapse threshold - 100 comoving Mpc

Challenges for numerical simulations of reionization:

*Resolving dwarf galaxies as sources of ionizing photons

*Simulation box >100 comoving Mpc on a side

*Following gravity, hydrodynamics, radiative transfer and their interaction

Zahn et al. 2006

Imprints of inhomogeneous reionization:

- The minimum virial temperature of galaxies was increased up to ~100,000K inside ionized regions
- Change in the clustering of galaxies (Babich & Loeb 2006; Wyithe & Loeb 2007) and the star formation rate density (Barkana & Loeb 2000)

The Race Between Stars and Quasars in Reionizing Cosmic Hydrogen

Loeb, arXiv:0811.2222, 2008

$L = i M_{C}^{2} \qquad t_{E} = M = M_{F}^{2} = 4\hat{a} \ 10^{\frac{7(i-10\%)}{(L=L_{E})}} \text{years}$ $M \ / \ expft = t_{E}g$

Stellar mass seed requires ~billion years to grow to an SDSS quasar ($10^{9}M_{\odot}$)

...But a billion year is the Hubble time at z~6, and feedback from star formation and quasar activity as well as BH kicks are likely to suppress continuous accretion...

Gravitational Wave Recoil

Gravitational Wave Recoil

Anisotropic emission of gravitational waves \rightarrow momentum recoil

Gravitational Wave Recoil

Recoil speed (~tens-4000 km/s) is independent of remnant black hole mass \rightarrow low-mass halos may easily lose their low-mass seeds after several mergers

$E = \frac{1}{2}v^2 \dot{a} \frac{GM}{r} = \dot{a} \frac{1}{2}v^2$

$\mathbf{E} = \frac{1}{2}\mathbf{v}^2 \, \dot{\mathbf{a}} \, \frac{\mathbf{GM}}{\mathbf{r}} = \dot{\mathbf{a}} \, \frac{1}{2}\mathbf{v}^2$

 $E = \frac{1}{2} (\mathbf{v} \dot{\mathbf{a}} \mathbf{v}_k)^2 \dot{\mathbf{a}} \frac{GM}{r}$ $= \mathbf{v} \dot{\mathbf{a}} \mathbf{v}_k + \frac{1}{2} (\mathbf{v}_k^2 \dot{\mathbf{a}} \mathbf{v}^2)$

$\mathbf{E} = \frac{1}{2}\mathbf{v}^2 \, \dot{\mathbf{a}} \, \frac{\mathbf{GM}}{\mathbf{r}} = \dot{\mathbf{a}} \, \frac{1}{2}\mathbf{v}^2$

 $E = \frac{1}{2} (\psi \dot{a} \psi_k)^2 \dot{a} \frac{GM}{r}$ $= \psi \dot{a} \psi_k + \frac{1}{2} (v_k^2 \dot{a} v^2)$

 \rightarrow test particles with $\sqrt{y} \sqrt{k}$ remain bound

Star Clusters Around Recoiled Black Holes in the Milky Way Halo

Figure 2. The total number of projected stars interior to r, $N_p(<r)$, for $M_{\bullet} = 10^5 M_{\odot}$ and $\alpha = 1.75$. The solid line corresponds to the cluster immediately after being ejected from its parent galaxy with $v_k = 5.8\sigma_*$. The alternating dashed and dotted lines correspond to the projected number of stars after every $10t_r \approx 650$ Myr. Immediately after ejection, the cluster rapidly expands until its relaxation time becomes comparable to the age of the Universe, with very little mass loss. In the case of $\alpha = 1$, the cluster evolves similarly, but only with ~ 100 stars in the cluster. For a $10^5 M_{\odot}$ BH, the circular velocity of the stars is $\approx 66 \text{ km s}^{-1}(r/0.1 \text{ pc})^{-1/2}$.

Figure 1. The cumulative distribution of ejected star clusters in the MW Halo. Plotted is the flux distribution associated with BHs masses greater than $10^3 \,\mathrm{M_{\odot}}$ (black), $10^4 \,\mathrm{M_{\odot}}$ (blue), and $10^5 \,\mathrm{M_{\odot}}$ (red), in our models with BH spin a = 0.9 (solid) and a = 0.1 (dashed) lines, plotted in units of the flux of the Sun at a distance of 1 kpc ($f_{\odot, \rm kpc}$). The top axis is labeled with the apparent bolometric magnitude of the clusters. Nearly all BHs with $M_{\bullet} \gtrsim 2 \times 10^3 \,\mathrm{M_{\odot}}$ have apparent magnitudes greater than 21, the rough magnitude limit of SDSS. The mass distribution of the ejected BHs has approximately equal mass per log M_{\bullet} interval, with $dN_{\rm BH}/dM_{\bullet} \propto M_{\bullet}^{-1}$.

Long Gamma-Ray Bursts: Observing One Star at a Time

Collapse of a Massive Star (accompanied by a supernova)

High-Redshift Gamma-Ray Bursts

Existing finder: Swift; **Proposed:** EXIST

- <u>Key observational question:</u> how to efficiently identify high-z GRBs ?
- <u>Key theoretical question:</u> *Pop-III progenitors?*
- <u>Requirements:</u> sufficient angular momentum to make a disk around the central black hole & loss of progenitor's envelope, so that central engine would still be active upon jet exit. Related issues: binarity, winds.

A Bright Explosion 620 Million Years after the Big Bang

<u>Detectability of Afterglow Emission Near the Lya Wavelength</u> <u>Photometric redshift identification: based on the Lya trough</u>

Barkana & Loeb 2003 astro-ph/0305470

Tomonori TOTANI¹, Nobuyuki KAWAI², George KOSUGI³, Kentaro AOKI⁴, Toru YAMADA³ Masanori IYE³, Kouji OHTA¹, and Takashi HATTORI⁴

But associated DLAs hide Lya absorption from the IGM...

Searches for high-z Galaxies:

- Lyman-break
- Lyë
- Other lines (H_e, CO, CII, OI, He)

<u>A future frontier:</u> polarized Lvë halos

Collapsing gas cloud

Rybicki & Loeb 1999; Dijkstra & Loeb arxiv:0711.2312

Observing the Diffuse Gas

21cm Mapping of Cosmic History

LIGHTING UP THE COSMOS

In the beginning of the Dark Ages, electrically neutral hydrogen gas filled the universe. As stars formed, they ionized the regions immediately around them, creating bubbles here and there. Eventually these bubbles merged together, and intergalactic gas became entirely ionized.

> Time: Width of frame: Observed wavelength:

Simulated images of 21-centimeter radiation show how hydrogen gas turns into a galaxy cluster. The amount of radiation (white is highest; orange and red are intermediate; black is least) reflects both the density of the gas and its degree of ionization: dense, electrically neutral gas appears white; dense, ionized gas appears black. The images have been rescaled to remove the effect of cosmic expansion and thus highlight the cluster-forming processes. Because of expansion, the 21-centimeter radiation is actually observed at a longer wavelength; the earlier the image, the longer the wavelength.

4.1 meters All the gas is neutral. The white areas are the densest and will

210 million years

give rise to the first stars and quasars.

show that the stars and quasars have begun to ionize the gas around them.

370 million years 2.4 million light-years 3.0 million light-years 3.6 million light-years 4.1 million light-years 2.8 meters

These bubbles of ionized gas grow.

460 million years 2.4 meters New stars and

quasars form and

2.1 meters The bubbles are

540 million years

beginning to interconnect.

620 million years

The only remaining neutral hydrogen taken over all of space. is concentrated in galaxies.

1.8 meters

710 million years

Predicted by Van de Hulst in 1944; Observed by Ewen & Purcell in 1951 at Harvard

21cm Tomography of Ionized Bubbles During Reionization is like Slicing Swiss Cheese HII HI

Observed wavelength \Leftrightarrow distance 21cm \hat{a} (1 + z) Separating the Physics from the Astrophysics

<u>Physics</u>: initial conditions from inflation; nature of dark matter and dark energy

Astrophysics: consequences of star formation

Three epochs:

- Before the first galaxies (z>25): mapping of density fluctuations through 21cm absorption
- **During reionization:** anisotropy of the 21cm power spectrum due to peculiar velocities
- After reionization (z<6): dense pockets of residual hydrogen (DLAs) trace large scale structure

<u>Testing gravity</u>: measuring the gravitational growth of perturbations on small scales (not probed so far) which are still in the linear regime at high redshifts (1<z<15)

Experiments

*MWA (Murchison Wide-Field Array) MIT/U.Melbourne,ATNF,ANU/CfA/Raman I.

*LOFAR (Low-frequency Array) Netherlands

*21CMA (formerly known as PAST) China

*PAPER

UCB/NRAO

*GMRT (Giant Meterwave Radio Telescope) India/CITA/Pittsburg

*SKA (Square Kilometer Array) International

Observatory Parameters

experiment	site	type	ν range	Area	date	goal
			MHz	\mathbf{m}^2		
Mark I^a	Australia	spiral	100-200	few	2007	All Sky
$EDGES^{b}$	Australia	four-point	100-200	few	2007	All Sky
$GMRT^c$	India	parabola array	150 - 165	4e4	2007	CSS^d
$PAPER^{e}$	Australia	dipole array	110 - 190	1e3	2007	PS/CSS/Abs
21CMA^{f}	China	dipole array	70 - 200	1e4	2007	\mathbf{PS}
$MWAd^g$	Australia	aperture array	80-300	1e4	2008	PS/CSS/Abs
$LOFAR^{h}$	Netherlands	aperture array	115 - 240	1e5	2008	PS/CSS/Abs
SKA^i	TBD	aperture array	100-200	1e6	2015	Imaging

<u>Status:</u> analogous to CMB research prior to COBE

Murchison Wide-Field Array: 21cm emission from diffuse hydrogen at z=6.5-15

- 4mx4m tiles of 16 dipole antennae, 80-300MHz
- 500 antenna tiles with total collecting area 8000 sq.m. at 150MHz across a 1.5km area; few arcmin resolution

When Was the Universe Ionized?

Figure 5. Distribution of x_i at redshifts z = 8, 9, 10, and 11 for the ζ parametrization. Same curve styles as for Figure 4.

Figure 14. Distribution of x_i at redshifts z = 8, 9, 10, and 11 when 21 cm measurements are included. In each panel, we plot the distribution of the ζ (black) and $N_{\rm ion}$ (red) parametrizations with (solid curves) and without (dotted curves) a 21 cm measurement of $x_i(z = 9.5) = 0.5 \pm 0.05$.

• Based on Lya forest at z<6 and CMB data *Pritchard, Loeb, & Wyithe, arXiv:0908.3891*

The Next Decade Will be Exciting!

- Large-aperture infrared telescopes and radio arrays will image the galaxies as well as the diffuse cosmic gas during the epoch of reionization over the coming decade. (21cm brightness fluctuations are expected to be anticorrelated with infrared galaxies during reionization).
- Adequate simulations of reionization will describe large (>100Mpc) boxes with high resolution for source identification.

Power-Spectrum Sensitivity

Isotropic power spectrum sensitivity, in logarithmic bins with $\Delta k = k/2$, for several experimental configurations. In each panel, the thin solid and dashed curves show estimates of the signal with and without reionization. The thick solid, dashed, and dot-dashed curves show error estimates for 1000 hour observations over 6 MHz with the SKA, MWA, and LOFAR, respectively. Each assumes perfect foreground removal. The dotted curve in the middle panel assumes a flat antenna distribution for the MWA. From **McOuinm et al.** 2006

McQuinn et al. 2006

$$T_{\rm sky} \sim 180 \ \left(\frac{\nu}{180 \ \rm MHz}\right)^{-2.6} \ \rm K \qquad \qquad \Delta T^{N}|_{\rm int} \sim 2 \ \rm mK \ \left(\frac{A_{\rm tot}}{10^{5} \ \rm m^{2}}\right) \ \left(\frac{10'}{\Delta\theta}\right)^{2} \ \left(\frac{1+z}{10}\right)^{4.6} \ \left(\frac{\rm MHz}{\Delta\nu} \ \frac{100 \ \rm hr}{t_{\rm int}}\right)^{1/2}.$$

Cooling Rate of Primordial Gas

Massive Accretion by Pop-III Proto-Stars

Resolving accretion flow down to ~0.03 pc

Bromm & Loeb, astro-ph/0312456

 $\mathbf{M} \mathbf{\emptyset} \mathbf{c}_{\mathbf{s}}^{3} = \mathbf{G}$

 $T_{min} \not o 200K$ for : H₂ à cooling

Final stellar mass is feedback limited (radiation, wind)

Probing Reionization with MW Satellites

Figure 1. The luminosity function (LF) of MW satellites in the SDSS footprint with the DR5 selection threshold. The observed function is shown by the blue points with the non-SDSS objects each contributing a fractional amount $f_{DR5} = 0.194$ to the total. The curves show the theoretical predictions including successively more elaborate models. The model given by the long-dashed, cyan curve illuminates only those VLII subhalos with maximum circular velocities that exceed V_5 at some point in their histories and continue to form stars after reionization via atomic hydrogen cooling (with an efficiency of $f_5 = 0.02$) and metal cooling in the last 10 Gyr ($f_{10G} \neq 0$). The short-dashed, red curve includes star formation in subhalo progenitors more massive than M_4 at $\bar{z}_{rei} = 11.2$ assuming a single redshift of reionization for the entire MWgfr and $f_{HI,ex} = 0.02$. The solid, black curve fitting the faint end of the observed LF additionally takes into account molecular hydrogen cooling, prior to suppression at $z_{H_2} = 23.1$, in progenitors more massive than $M_{\rm H_2} = 10^5 M_{\odot}$ with $f_{\rm H_2} = 0.4$. The long-dashed vertical line demarcates the luminosities at which pre- vs. post-SDSS satellites are observed.

- *Via-Lactae II:* dark matter simulation of the MW halo merger tree
- <u>*Resolution to "missing satellite problem":*</u> photo-ionization heating and molecular hydrogen suppression

Munoz, Madau, Loeb & Diemand 2009

Effect of Recoil on BH Growth and Feedback

440 km/s

740 km/s

Virial Temperature of Halos 1**0**7 320 10⁸ 100 Circular Velocity [km/s] 1**0**5 Virial Temperature [K] Atomic cooling 104 10³ H_2 cooling 3-sigma 10² 1 2-sigma

0.32

30

10

1

0

1-sigma

10

Redshift

20

Line-of-Sight Anisotropy of 21cm Flux Fluctuations

1+î

$$\mathbf{T}_{b} = \mathbf{\ddot{u}} \frac{\mathbf{T}_{s} \mathbf{\ddot{a}} \mathbf{T}_{f}}{\mathbf{1} + \mathbf{z}}$$

Peculiar velocity changes

 \rightarrow Power spectrum is not isotropic ("Kaiser effect")

 $\frac{dv_{r}}{dr} ! \qquad \hat{i}_{v}(k) = \hat{a} \cos^{2} \hat{o}_{k} \hat{a} \hat{i}(k) \qquad observer$ $P_{T_{b}} = [\cos^{2} \hat{o}_{k} \hat{i}(k) + \hat{i}_{iso}(k)]^{2}$ $\hat{i}_{iso} = \hat{i} \hat{i} + \hat{i}_{X_{HI}} + \hat{i}_{T} + \dots$

 $\cos^4 \dot{o}_k$; $\cos^2 \dot{o}_k$; $\cos^2 \dot{o}_k$ terms allow separation of powers

Barkana & Loeb, astro-ph/0409572; see also Bharadwaj & Ali, astro-ph/0401206

Primary challenge: foregrounds

- Terrestrial: radio broadcasting
- Galactic synchrotron emission
- Extragalactic: radio sources

Although the sky brightness (>10K) is much larger than the 21cm signal (<10mK), the foregrounds have a smooth frequency dependence while the signal fluctuates rapidly across small shifts in frequency (=redshift). Theoretical estimates indicate that the 21cm signal is detectable with the forthcoming generation of low-frequency arrays (Zaldarriaga et al. astro-ph/0311514; Morales & Hewitt astro-ph/0312437)

ZICHI GOSHIOIOGY AILEI

Reionization?

Damped Lya absorbers:

 $f_{HI} = (\dot{O}_{DLA} = \dot{O}_{b}) \dot{u} 3\%; at : z < 6$

 $\hat{u}_8 \oslash 0:2; at : z \oslash 4 \Rightarrow (\hat{i}T)_{signal} \oslash 0:1mK$ on 10cMpc $(\hat{i}T)_{noise} / (1+z)^{26}$

Acoustic peak: constrain dark energy at 0<z<15

Wyithe & Loeb 2007

Acoustic Oscillations

Wyithe, Loeb & Geil

Weighting Neutrinos with a 21cm Survey at z<6

The fractional change in the amplitude of the powerspectrum owing to the presence of a massive neutrino (horizontal grey lines, asymptoting towards a constant at high k values). The case shown, $f_{\nu} = 0.004$, corresponds to $m_{\nu} = 0.05$ eV. For comparison, the limits imposed by cosmic variance on the *SDSS*-LRG measurements of the powerspectrum are marked by the thick grey line. The *U*-shaped error curves correspond to an all-sky 21cm survey [$f_{\rm sky} = 0.65$ over a redshift range spanning a factor of 3 in (1 + z)] with MWA5000 and a 10^3 hour integration per field (line styles for z = 1.5, 3.5, 6.5 as in Figure 2). The inset shows these results on logarithmic axes that span a larger dynamic range of achievable precision. The straight thin lines in the inset show the cosmic-variance uncertainty in the power-spectrum measurement owing only to the number of available modes.

Loeb & Wyithe arXiv:0801.1677

Figure 10. Angular correlation function of emitters at z = 6.6, assuming that observed emitters reside in halos with $m \exp(-\tau_{\alpha}(\nu_0)) > 7 \times 10^{10} M_{\odot}$. The curves in the top panel are calculated in the same volume and with the same number of emitters, 58, as the SDF photometric sample. The bottom two panels are in a volume a slightly larger volume than the upcoming 1 sq. deg. Subaru/XMM-Newton Deep Survey (SXDS), with 250 emitters in the middle panel and with 190 in the bottom one. The thick error bars owe to shot noise, and the thin owe to shot noise plus cosmic variance. To calculate these errors, we conservatively assume $F_c = 0.25$ in the top two panels ($F_c = 0$ in the bottom panel). Current surveys can potentially distinguish an ionized universe (the curves labeled "intrinsic") from a universe with $\bar{x}_i \leq 0.5$.

From the Subaru Deep Field at z=6.6

xp < 0:5_{at}2à û But subject to uncertianties due to detailed radiative transfer effects: see Dijkstra et al, <u>arXiv:astro-ph/0701667</u>

The Impact of The IGM on High-Redshift Lya Emission Lines 7

Figure 4. The observed Ly α line from z = 5.7 galaxies in a reionised IGM for a range of different models. The upper right corner of each panel shows the model-parameter that is varied. Top Left: $M_* = 10M_{\odot}/\text{yr}$ (black), $M_* = 10^2 M_{\odot}/\text{yr}$ (grey) and $M_* = 10^3 M_{\odot}/\text{yr}$ (red). Top Right: $\sigma_{\alpha} = 1.0v_{\text{circ}}$ (black), $\sigma_{\alpha} = 0.7v_{\text{circ}}$ (red) and $\sigma_{\alpha} = 1.5v_{\text{circ}}$ (grey). Lower Left: Variation of the ionising background: no ionising background (dotted), Γ_{BG} (black), $10\Gamma_{\text{BG}}$ (grey) and $100\Gamma_{\text{BG}}$ (red). Lower Right: Impact of galaxies peculiar velocity: $v_{\text{pec}} = 0$ (black), $v_{\text{pec}} = -0.5\sigma_{\alpha}$ (red) and $v_{\text{pec}} = 0.5\sigma_{\alpha}$ (grey). For each model the total transmission, T_{α} and the skewness of the line, S_W , are shown.

TIME Magazine cover story, 9/06

Light From a Dark Age

Looking for the beginning of time ...

BigAbout 13.7 billion years ago, the universe burst into
existence, creating both space and time

Inflation era

still detectable today in the form of a faint

directions in space. The discovery of those

microwaves in 1964 confirmed the

existence of the Big Bang

whisper of microwaves streaming in from all

hydrogen and helium gas,

dense enough to burst into

gradually forming knots

thermonuclear flame,

forming the first stars

How the universe grew from dark soup to twinkling galaxies

... 13.4 billion years later

Albert Einstein suggested that gravity from a massive forergound object could distort and magnify background objects. By looking through a cluster of galaxies, astronomers have now found the magnified images of much more distant galaxies

galaxies. Their radiation in

hydrogen, bringing the dark

turn burned through the

remaining shrouds of

ages to a close.

Gravitational Present Light from a distant object Light from a distant object Galaxy cluster In the beginning ... Half a million years after the Big Bang, temperatures had fallen so low that the cosmos went dark. Half a billion years later. baby galaxies had begun to shine. What happened in between laid the foundations for the modern universe View from **Inside the Dark Era** the observatory What they're really seeing **Richard Ellis of Caltech** has found distant galaxies warped into odd, elongated shapes, as though they were being THE DARK AGES BEGIN DARK MATTER glimpsed through a cosmic When the cosmos is about 400,000 years Far more abundant than funhouse mirrror. The END OF THE DARK AGES FIRST STARS 3 old, it has cooled to about the temperature ordinary atoms, dark-matter 4 light from these galaxies of the surface of the Sun, allowing The earliest stars were extremely large and The death of the megastars particles were spread could ordinarily never be dense, weighing in at 20 to 100 times the mass subatomic particles to combine for the first triggered the formation of unevenly through the glimpsed through existing of the Sun, and more. The crushing pressures at time into atoms. The last burst of light from cosmos; areas of higher normal stars, creating the telescopes first normal-looking dwarf the Big Bang shines forth at this time; it is concentration drew in their cores made them burn through their nuclear

fuel in only a million years or so, and caused

them to spew out such intense radiation that it

may have consisted of clouds of hydrogen and

helium surrounding just one mega-star

kept other stars from forming. The first "galaxies"

TIME Graphic by Joe Lertola Sources: TKTKTK
HOW TO SEE IN THE DARK

Largest Data Set on the Sky

Number of independent patches:

while Silk damping limits the primary CMB anisotropies to only ø 10⁷

Noise due to foreground sky brightness:

$$\begin{split} N_{\nu} &\sim 0.4 \ \mathrm{mK} \ \left(\frac{I_{\nu}}{5 \times 10^5 \ \mathrm{Jy \ sr^{-1}}}\right) \left(\frac{l_{\min}}{35}\right) \left(\frac{5000}{l_{\max}}\right) \left(\frac{0.016}{f_{\mathrm{cover}}}\right) \\ &\times \left(\frac{1 \ \mathrm{year}}{t_0}\right)^{1/2} \left(\frac{\Delta \nu}{\nu}\right)^{-1/2} \ \left(\frac{50 \ \mathrm{MHz}}{\nu}\right)^{5/2}, \end{split}$$

Loeb & Zaldarriaga, Phys. Rev. Lett., 2004; astro-ph/0312134

Figure 2: Probability distribution within a small volume of the total mass fraction in galactic halos. The normalized distribution of \log_{10} of this fraction $F_{\rm col}(M_{\rm min})$ is shown for two cases: z = 20, $l_{\rm box} = 1$ Mpc, $M_{\rm min} = 7 \times 10^5 M_{\odot}$ (bottom panel), and z = 7, $l_{\rm box} = 6$ Mpc, $M_{\rm min} = 10^8 M_{\odot}$ (upper panel). In each case, the value in a periodic box ($\bar{\delta}_R = 0$) is shown along with the value that would be expected given a plus or minus $1 - \sigma$ fluctuation in the mean density of the box (dashed vertical lines). Also shown in each case is the mean value of $F_{\rm col}(M_{\rm min})$ averaged over large cosmological volumes (solid vertical line).

Barkana & Loeb, ApJ, 2003

Figure 1: Bias in the halo mass distribution in simulations. We consider the total amount of mass contained in all halos of individual mass M_{\min} or greater, expressed as a fraction of the total mass in a given volume. This cumulative fraction $F_{\rm col}(M_{\min})$ is shown as a function of the minimum halo mass M_{\min} . We consider z = 20, $l_{\rm box} = 1$ Mpc (solid curves), and z = 7, $l_{\rm box} = 6$ Mpc (dashed curves). At each redshift, we compare the true average distribution in the universe (upper curve) to the biased distribution that would be measured in a simulation box with periodic boundary conditions (for which δ_R is artificially set to zero).

Self-Regulated Star Formation

Primordial Gas Cloud

Virial temperature < 10,000K

destruction by starlight (10.2<E<13.6 eV)

Evaporation of gas cloud by photo-ionization heating to >10,000K

Virial temperature > 10,000K

$$M_{?} / E_{SN} \not{ o} \frac{3}{2} M_{gas} \hat{u}^{2}$$
$$f_{?} = \frac{M_{?}}{M_{gas}} / \hat{u}^{2} / M_{halo}^{2=3}$$

As observed for local dwarf galaxies $(M_2 < 3\hat{a} \ 10^{10}M_1)$

Binding Energy of Dark Matter Halos

Cross-correlation between 21cm brightness and galaxy density

Interedinating

Galaxy/Quasar

HI hole

Figure 4. Left: 21cm brightness temperature as a function of δ_{gal} . Two values of galaxy mass are assumed for a clumping of C = 10, $M = 10^{10} M_{\odot}$ (solid line) and $M = 10^{11} M_{\odot}$ (dashed line). The dot-dashed line shows C = 2 with $M = 10^{10} M_{\odot}$. Right: The cross-correlation function $\xi_{\text{gal}} = \langle \delta_{\text{gal}}(T - \langle T \rangle) \rangle$ for the IGM smoothed on various angular scales (θ). The function is presented assuming C = 10 for masses of $M = 10^{10} M_{\odot}$ (solid line) and $M = 10^{11} M_{\odot}$ (dashed line). The dot-dashed line represents C = 2 with $M = 10^{10} M_{\odot}$. The lines show power-laws of slope $d(\log \xi_{\text{gal}})/d(\log \theta) = -1$, -2 and -3. The upper and lower rows correspond to observations at z = 6.57 and z = 8 respectively.

Wyithe & Loeb (2006)

Figure 2. Top panels show the projection of \bar{x}_i in the survey volume. In the white regions the projection is fully ionized and in black it is neutral. The left, middle, and right panels are for z = 8.2 ($\bar{x}_i = 0.3$), z = 7.7 ($\bar{x}_i = 0.5$), and z = 7.3 ($\bar{x}_i = 0.7$). The middle and bottom rows are the intrinsic and observed Ly α emitters maps, respectively, for $f_E = 0.25$ and assuming that we can observe unobscured emitters with $m \exp(-\tau_{\alpha}(\nu_0)) > 7 \times 10^{10} M_{\odot}$. (Note that $L_{int,E} \propto m$.) The observed distribution of emitters is modulated by the location of the HII regions (compare bottom panels with corresponding top panels). Each panel is 94 Mpc across (or 0.6 degrees on the sky), roughly the area of the current Subaru Deep Field (SDF) at z = 6.6 (Kashikawa et al. 2006). The depth of each panel is $\Delta\lambda = 130$ Å, which matches the FWHM of the Subaru 9210 Å narrow band filter. The number densities of Ly α emitters for the panels in the middle row are few times larger than the number density in the SDF photometric sample of z = 6.6 LAEs.

Clustering of Lya Emitters

McQuinn et al. arXiv:0704.2239

Ine Imprint of Reionization on Galaxy Clustering

FIG. 5.— The normalized $\sigma^2(R)$ for $z_R = 15$ and $z_R = 6$ (upper and lower solid black curves, respectively); the limiting cases of the best current constraints of n (red, dotted curves) and α (blue, dashed curves).

Inhomogeneous photo-ionization heating to **o** 10⁴K modulates the minimum mass of galaxies on scales of tens of comoving Mpc

Babich & Loeb 2006, ApJ, 640, 1

Loeb & Zaldarriaga, Phys. Rev. Lett., 2004

So far, the hydrogen was only probed by quasars

Spectra of our sample of nineteen SDSS quasars at 5.74 < z < 6.42. Twelve of the spectra vere taken with Keck/ESI, while the others were observed with the MMT/Red Channel and Kitt Peak 4-meter/MARS spectrographs. See Table 1 for detailed information.

Fan et al. 2005

GRB080319B at higher redshifts

Bloom et al. arXiv:0803.3215

Cosmic Microwave Background (WMAP5)

$\ddot{u} = 0.09 \approx 0.02$

The polarization data indicates that the first stars must have formed 400 million years after the big bang, when the universe was only a few percent of its current age!

Dunkley et al. 2008

How do massive stars end their life?

Heger et al. 2003

Early Galaxies: *Parametrizing Our Ignorance* Star Formation

- Mass function of dark matter halos: *N-body simulations*.
- <u>Minimum halo mass for star formation:</u>
 200K H2 cooling
 10⁴K -- atomic H cooling
 10⁵K -- assembly of gas from a photo-ionized IGM
- <u>Star formation efficiency:</u> **f**_? Ø **10%**
- <u># of ionizing photons/baryon in stars:</u>
 ~4000 Pop I/II; ~ 10⁵ -- Pop III (metal free)

Figure 2. The faint end of the luminosity function of MW satellites in the SDSS footprint with the DR5 selection threshold. The observed function is shown by the blue points with the non-SDSS objects each contributing a fractional amount $f_{\rm DR5} = 0.194$ to the total. The curves show the theoretical predictions for different values of $\bar{z}_{\rm rei}$ with $z_{\rm H_2} = 23.1$ and other model parameters optimized to produce the best agreement with luminosity function data. The solid, black; short-dashed, red; and long-dashed, green curves have $\bar{z}_{\rm rei} = 11.2$, 9.14, and 7.77, respectively. The longdashed vertical line demarcates the luminosities at which pre- vs. post-SDSS satellites are observed.

Figure 5. Scatter plot of M_{300} , the mass within 300 pc of the satellite center, versus satellite visual luminosity, $L_{\rm V}$. Known MW satellites are represented by blue circles, while black x's denote illuminated subhalos from our $(\bar{z}_{\rm rei}, z_{\rm H_2}) = (11.2, 23.1)$ model with M_{300} measured directly from the simulation. Red squares show values of M_{300} measured, for each subhalo, at the time when the evolution in its maximum circular velocity has reached its peak and assuming an NFW profile. The short-dashed blue, solid black, dotted green, and long-dashed lines represent power-law fits of the $M_{300} - L_{\rm V}$ relation respectively from observations, directly from the simulation, assuming NFW profiles for simulated subhalos today, and assuming NFW profiles for the subhalos when their maximum circular velocities peak.