The End of the

First Stars

Alexander Heger Stan Woosley Ken Chen
Candace Joggerst Brian Crosby Ryan Poitra

Overview

- Varieties of Stellar Deaths
- Really Big Stars
- Nucleosynthesis Signatures

Cosmic Dark Age

time

Formation and Properties of the First Stars

No metals \rightarrow no metal cooling \rightarrow more massive stars
(Bromm, Coppi, \& Larson 1999, 2002; Abel, Bryan, \& Norman 2000, 2002;Nakamura \& Umemura 2001; O’Shea \& Norman 2006,...) \rightarrow typical mass scale $\sim 100 \mathrm{M}_{\odot}$
Heating by WIMP annihilation \rightarrow longer accretion \rightarrow even bigger stars
First stars are very hot and very bright

No metals \rightarrow no mass loss \rightarrow end life as massive stars?

Mass Loss in Very Massive Primordial Stars

- Negligible line-driven winds
(mass loss ~ metallicity ${ }^{\geqslant 12}$ - Kudritzki 2002)
- No opacity-driven pulsations (no metals - Baraffe, Heger \& Woosley 2001)
- Continuum-driven winds and errptions @ L~L $\mathrm{L}_{\text {Edd }}$ have to be explored (Smith, Owocki, Shaviv, et al. 2005++)
- Epsilon mechanism inefficient in metal-free stars
below ~1000 M . (Baraffe et al. 2001)
from pulsational analysis we estimate:
- 120 solar masses: < 0.2%
- 300 solar masses: < 3.0%
- 500 solar masses: < 5.0%
- 1000 solar masses: < 12. \% during central hydrogen burning

- Red Super Giant pulsations could lead to significant mass loss during
helium burning for stars above $\sim 500 \mathrm{M}$.
- Rotationally induced mixing and mass loss, giant eruptions, etc.?

Mass Loss by Giant eruptions?

Mass Loss due to critical rotation?

end of central He-burning: $M=58.05 M_{\odot}$

What is the

fate of the
first stars?

Once formed, the evolution of a star is governed by gravity: continuing contraction
to higher central densities and temperatures

Nuclear burning stages

Burning stages		$20 \mathrm{M}_{\odot}$ Star		$200 \mathrm{M}_{\odot}$ Star	
Fuel	Main Product	$\begin{gathered} \mathrm{T} \\ \left(10^{9} \mathrm{~K}\right) \end{gathered}$	Time (yr)	$\begin{gathered} \mathrm{T} \\ \left(10^{9} \mathrm{~K}\right) \end{gathered}$	Time (yr)
H		0.02	10^{7}	0.1	2×10^{6}
	O, C	0.2	10^{6}	0.3	2×10^{5}
		0.8	10^{3}	1.2	10
	, M	1.5	3	2.5	3×10^{-6}
	i,	2.0	0.8	3.0	2×10^{-6}
	Fe	3.5	0.02	4.5	3×10^{-7}

(a miracle occurs)

Supernova Explosion

Explosive Nucleosynthesis

in supernovae from massive stars

Fuel	Main Product	Secondary Product	$\begin{gathered} \mathrm{T} \\ \left(10^{9} \mathrm{~K}\right) \end{gathered}$	Time (s)	Main Reaction
Innermost ejecta	r-process	-	$\begin{aligned} & >10 \\ & \text { low } \mathrm{Y}_{\mathrm{e}} \end{aligned}$	1	(n, γ) β^{-}
Si, 0	${ }^{56} \mathrm{Ni}$	iron group	>4	0.1	(α, γ)
0	Si, S	$\begin{aligned} & \mathrm{Cl}, \mathrm{Ar} \\ & \mathrm{~K}, \mathrm{Ca} \end{aligned}$	3-4	1	${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$
O, Ne	$\mathrm{O}, \mathrm{Mg}, \mathrm{Ne}$	Na, Al, P	2-3	5	$(\gamma, \alpha),(\alpha, \gamma)$
		p-process ${ }^{11} \mathrm{~B},{ }^{19} \mathrm{~F}$, ${ }^{138} \mathrm{La},{ }^{180} \mathrm{Ta}$	2-3	5	(γ, n)
		v-process		5	$\left(\nu, v^{\prime}\right),\left(\nu, e^{-}\right)$

Things that blow up

 supernovae- CO white dwarf \rightarrow Type la SN, E \approx 1Bethe
- MgNeO WD, accretion \rightarrow AIC, faint SN
- "SAGB" star (AGB, then SN) \rightarrow EC SN
- "normal" SN (Fe core collapse) \rightarrow Type II SN
- WR star (Fe CC) \rightarrow Type lb/c
- "Collapsar", GRB \rightarrow broad line Ib/a SN, "hypernova"
- Pulsational pair SN \rightarrow multiple, nested Type I/II SN
- Very massive stars \rightarrow pair $\mathrm{SN}, \leq 100 \mathrm{~B}\left(1 \mathrm{~B}=10^{51} \mathrm{erg}\right)$
- Very massive collapsar $\rightarrow \mathrm{IMBH}, \mathrm{SN}$, hard transient
- GR He instability $\rightarrow>100$ B SN, SMBH
- Supermassive stars $\rightarrow \gtrsim 100000$ B SN or SMBH

Supermassive Stars

Supermassive Stars

 Can they ever form?- Collapse due to GR instability $\left(\gamma_{\text {ot }}>4 / 3\right)$
- Pop III: for M ~ 75,000 M :

Collapse during H/He burning

- Pop III: for M ~ 150,000 M_{0} :

Collapse before hydrogen burning

- Pop III: for $\mathrm{M} \sim 80,000 \mathrm{M}_{9}$:

GR He supernova, E = 150 B

Supermassive Stars

Pair-Instability Supernovae

Many studies in literature since more than 3 decades, e.g.,
Rakavy, Shaviv, \& Zinamon (1967)
Bond, Anett, \& Carr (1984)
Glatzel, Fricke, \& El Eid (1985) Woosley (1986)

Some recent calculations:
Umeda \& Nomoto 2002 Heger \& Woosley 2002

adiabatic index < 4/3
Compression does not result in sufficient increase in pressure (gradient) to balance higher gravity at lower radius e $^{+} / e^{--P a i r ~ I n s t a b i l i t y ~}$ Internal gas energy is converted into $\mathrm{e}^{+} / \mathrm{e}^{-}$rest mass (hard photons from tail of Planck spectrum) Photo disintegration Internal gas energy is used to unbind heavy nuclei into alpha particles and at higher temperature those into free nucleons

Last 100 yr of a $110 \mathrm{M}_{\mathbf{\circ}}$ Star

First Pulse of a $110 \mathbf{M}_{\mathbf{\circ}}$ Star

First Pulse of a $110 \mathrm{M}_{\odot}$ Star

First Pulse of a 110 M . Star - Ringdown

Pulsational Pair Instability Supernovae

Range of recurrence time, irregular, days to $10,000 \mathrm{yr}$
interaction of different burning phases ($\mathrm{Ne}, \mathrm{O}, \mathrm{Si}$)
burning to different degrees
burning locations (central, shell)
energy of pulse determines cooling time and mechanism:
low $\mathrm{E} \rightarrow$ low $\mathrm{S} \rightarrow$ compact, hot $\rightarrow \mathrm{v}$ cooling
high $\mathrm{E} \rightarrow$ high $\mathrm{S} \rightarrow$ cool star $\rightarrow \mathrm{Y}$ cooling only, \boldsymbol{T}_{K-1}
after pulse: ring-down by v dampening and mechanical
dampening by shocks/ejecta from surface of core
ejection of outer layers
number of pulses varies similarly
typically period after first pulse is longest
mechanism essentially independent of metallicity

Nucleosynthesis in

$$
\begin{aligned}
& \text { Pair-Instability } \\
& \text { Supernovae }
\end{aligned}
$$

70 solar mass He core, primordial composition Initial mass: 150M \mathbf{M}_{\odot}

130 solar mass He core, primordial composition Initial mass: $\mathbf{2 5 0 M}_{\odot}$

Explosion of a $150 \mathrm{M}_{\odot}$ Star

RT instabilities in the O-burning shell

See also posters by Ken Chen

Pair-Instability Supernovae do not reproduce the
abundances as observed in very metal poor halo stars!

Pulsational Pair SN Scenario

Pulsational Pair SN Scenario

Nucleosynthesis from Stars 10-100 M_{\circ}

Mixing in $25 \mathbf{M}_{\odot}$ Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields
\rightarrow Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope

Simulations: Candace Joggerst (UCSC/LANL T-2)

Fallback and Remnants

Supernovae, Nucleosynthesis, \& Mixing

SN, no mixing

SN + mixing

Pop III Nucleosynthesis

Mg yield (ejecta mass fraction)
Heger \& Woosley, in prep., (2009)

Pop III Nucleosynthesis Grid

Library of yields as a function of explosion energy

10 explosion energies from 0.3 to $10 B$

1200 supernova explosions with full stellar/explosive nucleosynthesis

2 different models for piston location

Heger \& Woosley (2009)

Comparison to Observational Data

Heger \& Woosley (2009), Similar good fits from Ken Nomoto's Group

Reconstruction of the IMF

primordial stars form, nucleosynthesis ejected

obtain IMF of population of progenitor stars

ejecta incorporated in low-Z halo stars

compare abundances to primordial star nucleosynthesis library
find low-Z halo stars (HERES, SEGUE, ...)

measure abundances (VLT, KECK, ...)

Multi-Star Fit

best single star fit: $\sigma^{2}=4.3974$

sample multi-star fit: $\sigma^{2}=0.5293$

weight	mass	energy	mixing
$1.728 \mathrm{E}-05$	10.6	0.3	0.00251
$5.03 \mathrm{E}-07$	10.6	5.0	0.00631
$1.475 \mathrm{E}-07$	10.7	1.8	0.03981
$1.811 \mathrm{E}-06$	11.6	0.9	0.00100
$6.472 \mathrm{E}-01$	17.7	0.6	0.00398
$9.789 \mathrm{E}-05$	21.5	0.9	0.01585
$6.955 \mathrm{E}-05$	27.0	0.9	0.00631
$2.211 \mathrm{E}-05$	30.5	0.9	0.00158
$2.004 \mathrm{E}-01$	32.0	0.9	0.00398

Finding First Star Ashes

Explosion models predict much material is mixing up to metallicity $1 / 100$ solar ==> Where are these stars?
They are rare!

Koch et al. (2006)

Black Holes and GRBs from Rotating Stars

A small fraction of single stars is born rotating rapidly

The fastest rotators evolve chemically homogeneously, become WR stars on the MS, and may lose less angular momentum.

Summary

Due to their unique composition, the birth, life and death of primordial stars is very different from later generations.

- Even stars of several $100 \mathrm{M}_{\odot}$ might keep most of their mass until collapse or explosion
\rightarrow But no observational abundance evidence for pure pair SN
- Pop III Stars with $\gtrsim 100 \mathrm{M}_{\odot}$ may encounter mixing during core helium burning, making lots of CNO and little $\mathrm{Fe}++$
- Some supermassive Pop III stars may still make powerful SN Ultra Metal-Poor stars
- Stars of 10-15 M_{\odot} seem to give good fits for many UMP stars
\rightarrow Reconstruction of primordial IMF from stellar yields?

