First Stars and First Galaxies, University of Texas, Austin, TX, March 9, 2010

## Fhe End of the **First Stars Alexander Heger Stan Woosley Ken Chen Candace Joggerst Brian Crosby Ryan Poitra**

# Overview

## Varieties of Stellar Deaths

## • Really Big Stars

## Nucleosynthesis Signatures



#### **Cosmic Dark Age**



### time



## **Formation and Properties** of the First Stars

## No metals $\rightarrow$ no metal cooling $\rightarrow$ more massive stars (Bromm, Coppi, & Larson 1999, 2002; Abel, Bryan, & Norman 2000, 2002; Nakamura & Umemura 2001; O'Shea & Norman 2006,...)

#### → typical mass scale ~100 M<sub>c</sub>

Heating by WIMP annihilation  $\rightarrow$  longer accretion  $\rightarrow$  even bigger stars



No metals  $\rightarrow$  no mass loss  $\rightarrow$  end life as massive stars?

### **Mass Loss in Very Massive Primordial Stars**

- Negligible line-driven winds (mass loss ~ metallicity<sup>>1/2</sup> – Kudritzki 2002)
- No opacity-driven pulsations (no metals Baraffe, Heger & Woosley 2001)
- Continuum-driven winds and errptions @ L~L<sub>Edd</sub> have to be explored (Smith, Owocki, Shaviv, et al. 2005++)
- Epsilon mechanism inefficient in metal-free stars below ~1000 M (Baraffe et al. 2001)

from pulsational analysis we estimate:

- 120 solar masses: < 0.2 %</p>
- 300 solar masses: < 3.0 %</p>
- 500 solar masses: < 5.0 %</p>
- 1000 solar masses: < 12. %

during central hydrogen burning



- Red Super Giant pulsations could lead to significant mass loss during helium burning for stars above ~500 M.
- Rotationally induced *mixing* and mass loss, giant eruptions, etc.?

### **Mass Loss by Giant eruptions?**





### Mass Loss due to critical rotation?

Eikstroem, 2007

# What is the fate of the first stars?

#### Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures



## **Nuclear burning stages**

| Burning stages |                 | 20 M <sub>☉</sub> Star   |                        | 200 $M_{\odot}$ Star     |                    |
|----------------|-----------------|--------------------------|------------------------|--------------------------|--------------------|
| Fuel           | Main<br>Product | Т<br>(10 <sup>9</sup> К) | Time<br>(yr)           | Т<br>(10 <sup>9</sup> К) | Time<br>(yr)       |
| н              | He              | 0.02                     | <b>10</b> <sup>7</sup> | 0.1                      | 2×10 <sup>6</sup>  |
| He             | 0, C            | 0.2                      | <b>10</b> <sup>6</sup> | 0.3                      | 2×10 <sup>5</sup>  |
| C              | Ne,<br>Mg       | 0.8                      | <b>10</b> <sup>3</sup> | 1.2                      | 10                 |
| Ne             | O, Mg           | 1.5                      | 3                      | 2.5                      | 3×10 <sup>-6</sup> |
| 0              | Si, S           | 2.0                      | 0.8                    | 3.0                      | 2×10 <sup>-6</sup> |
| Si             | Fe              | 3.5                      | 0.02                   | 4.5                      | 3×10 <sup>-7</sup> |



## (a miracle occurs)

# Supernova Explosion

## **Explosive Nucleosynthesis**

in supernovae from massive stars

| Fuel                | Main<br>Product   | Secondary<br>Product                                                                   | Т<br>(10 <sup>9</sup> К)  | Time<br>(s) | Main<br>Reaction                  |
|---------------------|-------------------|----------------------------------------------------------------------------------------|---------------------------|-------------|-----------------------------------|
| Innermost<br>ejecta | <i>r</i> -process | -                                                                                      | >10<br>Iow Y <sub>e</sub> | 1           | <b>(n,</b> γ), β <sup>–</sup>     |
| Si, O               | <sup>56</sup> Ni  | iron group                                                                             | >4                        | 0.1         | (α,γ <b>)</b>                     |
| Ο                   | Si, S             | CI, Ar,<br>K, Ca                                                                       | 3 - 4                     | 1           | <sup>16</sup> O + <sup>16</sup> O |
| O, Ne               | O, Mg, Ne         | Na, AI, P                                                                              | 2 - 3                     | 5           | (γ,α <b>)</b> , (α,γ <b>)</b>     |
|                     |                   | p-process<br><sup>11</sup> B, <sup>19</sup> F,<br><sup>138</sup> La, <sup>180</sup> Ta | 2 - 3                     | 5           | (γ <b>,n)</b>                     |
|                     |                   | v <b>-process</b>                                                                      |                           | 5           | (v, v'), (v, e⁻)                  |

## Things that blow up supernovae

- CO white dwarf → Type Ia SN, E≈ 1Bethe
- MgNeO WD, accretion → AIC, faint SN
- "SAGB" star (AGB, then SN) → EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type Ib/c
- "Collapsar", GRB → broad line lb/a SN, "hypernova"
- Pulsational pair SN → multiple, nested Type I/II SN
- Very massive stars → pair SN, ≤100B (1B=10<sup>51</sup> erg)
- Very massive collapsar → IMBH, SN, hard transient
- GR He instability → >100 B SN, SMBH
- Supermassive stars  $\rightarrow \geq$  100000 B SN or SMBH



MAS

5





## **Supermassive Stars** Can they ever form?

- Collapse due to GR instability ( $\gamma_{ref}$  >4/3)
- Pop III: for M ~ 75,000 M :

Collapse during H/He burning
Pop III: for M ~ 150,000 M :

Collapse before hydrogen burning
Pop III: for M ~ 80,000 M :

GR He supernova, E = 150 B

## **Supermassive Stars**



## Pair-Instability Supernovae

Many studies in literature since more than 3 decades, e.g., Rakavy, Shaviv, & Zinamon (1967) Bond, Anett, & Carr (1984) Glatzel, Fricke, & El Eid (1985) Woosley (1986)

Some recent calculations: Umeda & Nomoto 2002 Heger & Woosley 2002



Kippenhahn & Weigert (1990)

### **Instability Regimes**

adiabatic index < 4/3 Compression does not result in sufficient increase in pressure (gradient) to balance higher gravity at lower radius

#### e<sup>+</sup>/e<sup>-</sup>-Pair Instability

Internal gas energy is converted into e<sup>+</sup>/e<sup>-</sup> rest mass (hard photons from tail of Planck spectrum)

#### **Photo disintegration**

Internal gas energy is used to unbind heavy nuclei into alpha particles and at higher temperature those into free nucleons



#### Last 100 yr of a 110 $M_{\odot}$ Star



#### First Pulse of a 110 $M_{\odot}$ Star



#### First Pulse of a 110 $M_{\odot}$ Star





#### First Pulse of a 110 M. Star - Ringdown



## **Pulsational Pair Instability Supernovae**

Range of recurrence time, irregular, days to 10,000 yr interaction of different burning phases (Ne, O, Si) burning to different degrees burning locations (central, shell) energy of pulse determines cooling time and mechanism: low E → low S → compact, hot → v cooling high E → high S → cool star → γ cooling only, τ<sub>KH</sub> after pulse: ring-down by v dampening and mechanical dampening by shocks/ejecta from surface of core

ejection of outer layers

number of pulses varies similarly

typically period after first pulse is longest

mechanism essentially independent of metallicity



## Nucleosynthesis In **Pair-Instability** Supernovae











## **Explosion of a 150 M<sub>o</sub> Star**

#### **RT instabilities in the O-burning shell** See also posters by Ken Chen







# Problem

Pair-Instability Supernovae do not reproduce the abundances as observed in very metal poor halo stars!



#### **Pulsational Pair SN Scenario**



#### **Pulsational Pair SN Scenario**



# Nucleosynthesis from Stars $10-100 M_{\odot}$

## Mixing in 25 M<sub>o</sub> Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

➔ Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope



Simulations: Candace Joggerst (UCSC/LANL T-2)



#### Fallback and Remnants





#### Supernovae, Nucleosynthesis, & Mixing



# **Pop III Nucleosynthesis**



**Elemental Yields** as a function of initial mass non-rotating stars 120 stellar masses "complete" reaction network normalized to Mg **RESULTS:** e.g., Production of <sup>7</sup>Li by neutrino interaction in very compact stellar envelope!

Mg yield (ejecta mass fraction)

#### Heger & Woosley, in prep., (2009)

#### **Pop III Nucleosynthesis Grid**



Library of yields as a function of explosion energy

10 explosion energies from 0.3 to 10 B

1200 supernova explosions with full stellar/explosive nucleosynthesis

2 different models for piston location



Heger & Woosley (2009)

#### **Comparison to Observational Data**



Heger & Woosley (2009), Similar good fits from Ken Nomoto's Group







# **Reconstruction of the IMF**



nucleosynthesis library

## **Multi-Star Fit**



sample multi-star fit:  $\sigma^2 = 0.5293$ 

| weight    | mass | energy | mixing  |
|-----------|------|--------|---------|
| 1.728E-05 | 10.6 | 0.3    | 0.00251 |
| 5.036E-07 | 10.6 | 5.0    | 0.00631 |
| 1.475E-07 | 10.7 | 1.8    | 0.03981 |
| 1.811E-06 | 11.6 | 0.9    | 0.00100 |
| 6.472E-01 | 17.7 | 0.6    | 0.00398 |
| 9.789E-05 | 21.5 | 0.9    | 0.01585 |
| 6.957E-05 | 27.0 | 0.9    | 0.00631 |
| 2.211E-05 | 30.5 | 0.9    | 0.00158 |
| 2.004E-01 | 32.0 | 0.9    | 0.00398 |

best single star fit:  $\sigma^2 = 4.3974$ 

### **Finding First Star Ashes**

Explosion models predict much material is mixing up to metallicity 1/100 solar ==> Where are these stars? They are rare!





30

 $M_{init} [M_{\odot}]$ 

40

0.0

10

20

#### **Black Holes** and GRBs from **Rotating Stars**

A small fraction of single stars is born rotating rapidly

The fastest rotators evolve chemically homogeneously, become WR stars on the MS, and may lose less angular momentum.

(Yoon & Langer 2006)

50

# Summary

Due to their unique composition, the birth, life and death of primordial stars is very different from later generations.

- Even stars of several 100  $\rm M_{\odot}$  might keep most of their mass until collapse or explosion
  - → But no observational abundance evidence for pure pair SN
- Pop III Stars with ≥100 M<sub>☉</sub> may encounter mixing during core helium burning, making lots of CNO and little Fe++
- Some supermassive Pop III stars may still make powerful SN Ultra Metal-Poor stars
- Stars of 10-15  $M_{\odot}$  seem to give good fits for many UMP stars
- Reconstruction of primordial IMF from stellar yields?