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I. Introduction

Program XRbinary calculates light curves of low-mass X-ray binary stars. The model
used by the program has two stars in circular orbits around their center of mass. The stars
obey Kepler’s law:

G(m1 +m2) = ω2a3s (1)

ω =
2π

P
(2)

where G is the gravitational constant, m1 and m2 are the masses of the two stars, ω is the
orbital angular velocity of the binary, as is the separation of the centers of mass of the two
stars, and P is the orbital period. Star 1, the “primary star,” is surrounded by an accretion
disk. Star 2 is called the “secondary star.”

Because the program is optimized for calculating the light curves of X-ray binary stars,
it has several distinctive features:

• The secondary star is assumed to fill its Roche lobe.

• The primary star is much smaller than any other structure in the system.

• Irradiation is important and can dominate local sources of heat.

• The geometry of the accretion disk can be complicated.

• The emitting material may not be confined to the stars and accretion disk. For example
there may be an accretion disk corona or an advective flow region.

• Because the geometry can be complex, the program uses ray-tracing to calculate light
curves and irradiation.

II. The Properties of the Primary Star (= Star 1)

Star 1 is a small sphere if it represents neutron star, or an invisible point mass if it
represents a black hole. In either case, it is much smaller than all other dimensions in the
system and is unresolved by any of the grids used in calculating the light curves.

The primary star has luminosity L1 and effective temperature T1. The only difference
between a neutron star and a black hole is that L1 = 0 for a black hole. The flux at a
distance d from the primary is

F1 =
L1

4πd2
. (3)

The primary emits black body radiation. The specific intensity emitted by a black body is
independent of angle and, therefore, the relation between specific intensity and flux is:

F1 =
∫ π/2

0
I1 cos θ sin θdθdφ = πI1 (4)
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Furthermore, the flux from a spherical star with radius R1 seen by a distant observer is

F1(λ) =
∫ π/2

0
I1(λ)R2

1 cos θ sin θdθdφ = πR2
1 I1(λ). (5)

Making use of the definition of effective temperature L1 = 4πR2
1σT

4
1 , we find

F1(λ) =
L1

4σT 4
1

I(λ) =
L1

4πσT 4
1

B(λ) (6)

where B(λ) is the black body flux:

B(λ) =
2πhc2

λ5
1

exp(hc/λkT )− 1
(7)

Equation 3 can be used to calculate irradiation and heating by star 1 and equation 6 can be
used to calculate the direct contribution of flux from star 1 to the light curve.

III. The Geometry and Temperature of the Secondary Star (= Star 2)

III.1. Geometry

The surface of the secondary star is assumed to coincide with its largest confining
zero-velocity surface, its Roche lobe. The zero velocity surfaces are the surfaces that satisfy
the equation (See Appendix B)

V =
Gm1

as

[
− as
r1
− q as

r2
− 1

2
(1 + q)

(ρcm
as

)2]
= constant (8)

where q = m2/m1 is the mass ratio, r1 and r2 are the distances of a point from the centers
of the stars, and ρcm is the perpendicular distance of the point from the rotation axis of the
binary system. The center of mass of the binary is along the axis joining the centers of the
stars at a distance rcm from the center of the secondary star, where

rcm =
m1

m1 +m2

as =
1

1 + q
as. (9)

Since the surface of the star is coincident with a zero-velocity surface, the unit vector
normal to its surface is given by

n̂ =
∇V
|∇V |

(10)

where ∇ is the gradient operator and ∇V is evaluated at the star’s surface. The explicit
form of ∇V can be messy (see Appendix C) and, except for a few special cases, is more
easily calculated numerically. The surface gravity of the star is

~g = −∇V, (11)

3



where, again, ∇V is evaluated at the star’s surface.

The Lagrangian points are the five places where ∇V = 0; the inner Lagarangian point
is the Lagrangian point along the line joining the centers of the two stars. The Roche lobes
are the surfaces around the two stars on which V equals its value at the inner Lagrangian
point. Equation 10 is undefined at the inner Lagrangian point, but n̂ = ±r̂ everywhere along
the line joining the centers of the stars, where r̂ is the unit vector in the direction from the
center of star 2 (the sign switches at the inner Lagrangian point). We set n̂ = r̂ at the inner
Lagrangian point also.

The vector element of surface area is

d ~A =
n̂ dS

n̂ · r̂
(12)

where dS is an the scalar element of area on the surface of a sphere centered on the origin.
The factor 1/(n̂ · r̂) is a projection factor introduced because the surface of the star is not
perpendicular to r̂. The expression for dS depends on the coordinate system.

The vector element of surface area projects to an area

n̂o · d ~A (13)

on the sky, where n̂o is the unit vector in the direction of the observer. The total visible
projected surface area is then

Asky =
∫
n̂o · d ~A =

∫ ∫
(n̂o · n̂)

dS

n̂ · r̂
(14)

where the integral is taken over the visible surface of the star. A surface element of an
isolated star is visible if its surface normal satisfies the condition

n̂o · d ~A > 0 (15)

or, equivalently, n̂o · n̂ > 0. If other components of the system can obscure the star, deter-
mination of visibility becomes more complicated (see Section IV.2).

III.2. Gravity Darkening and Local Effective Temperature

The local effective temperature Teff of the secondary star is given by the gravity-
darkening law

Teff = 〈Teff〉
(
|g|
〈|g|〉

)β
(16)

where 〈Teff〉 and 〈|g|〉 are the mean effective temperature and mean surface gravity of the
star, and β is the gravity darkening exponent. The value of 〈Teff〉 is an input parameter
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Figure 1: The gravity darkening coefficient as a function of effective temperature.

but 〈|g|〉 is calculated by the program. To provide a self consistent way to calculate 〈|g|〉,
we define the mean effective temperature to be

L2 = σ〈Teff〉4S =
∫
σT 4

effdS =
∫
σ〈Teff〉4

(
|g|
〈|g|〉

)4β

dS (17)

where L2 is the luminosity of star 2, S is its total surface area, and the integral is taken over
the entire surface of the star. We have, then,

〈|g|〉4β =
1

S

∫
|g|4βdS (18)

The gravity darkening coefficient is equal to 0.25 for stars with radiative envelopes and lies
between ∼ 0.05 and ∼ 0.11 for stars with convective envelopes. The gravity darkening
coefficient used in the program depends only on temperature and is an approximation to the
coefficients for main sequence stars given by Claret (2000, A& A, 359, 289). The dependence
is shown in Figure 1.

The secondary star can have (roughly) circular spots that are hotter or colder than
the temperature given by equation 16. Each spot is defined by the position of its center
in θ and φ, by its angular radius as seen from the center of the secondary star, and by its
temperature, which is specified by the ratio Tspot/Teff . Note that specifying the temperature
this way means that the temperature varies within a spot as Teff varies. If there is more
than one spot and if the spots overlap, the fraction by which the temperatures in the overlap
regions are reduced is the product of the factors for the individual overlapping spots.

If the user asks the program to included the effects of irradiation, the local effective
temperatures across the surface of the secondary star can be greatly increased (see Section
VI).
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Figure 2: The components of the accretion disk.

IV. The Geometry and Temperature of the Accretion Disk

In the current version of the program the accretion disk is symmetric about the orbital
plane. It consists of an elliptical “main disk” plus a “disk rim,” a “disk edge,” a “disk torus,”
and “inner disk” (see Figure 2). The height of the disk above the orbital plane is the sum
of the heights of the individual components:

H = Hmain +Hrim +Htorus, (19)

although the rim and torus are not allowed to overlap.

The projection of the accretion disk onto the orbital plan is elliptical with star 1 at one
focus. The properties of the disk are specified in an auxiliary cylindrical coordinate system
(a, ζ, h) in which the disk is circular and are then mapped to the (ρ, ζ, h) coordinate system

ζ
o

to star 2

ρ

a
ζ

orbital motion

direction of

Figure 3: Top view of the eccentric disk. All disk properties are specified as if the disk were
circular with radial coordinate a. The disk is then “stretched” to make it elliptical by means
of the transformation ρ = a(1−e2)/[1+e cos(ζ−ζ0)], where ζ0 is the longitude of periastron.
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Figure 4: Side view of the main disk, defining the meaning of its parameters.

by the transformation

ρ =
a(1− e2)

1 + e cos(ζ − ζ0)
(20)

where e is the eccentricity of the disk and ζ0 is the angle at which the disk is closest to star 1
(see Figure 3). Thus, the disk has a minimum radius amin and maximum radius amax, which
map to

ρmin =
amin(1− e2)

1 + e cos(ζ − ζ0)
(21)

ρmax =
amax(1− e2)

1 + e cos(ζ − ζ0)
(22)

In cylindrical coordinates the vector element of surface area on the top and bottom
surfaces of the disk is

d ~A =
n̂ ρdρdζ

n̂ · ĥ
, (23)

where here n̂ is the unit vector normal to the surface of the disk and ĥ is the unit vector
in the direction perpendicular to the orbital plane (positive hath is antiparallel to ~ω). The
vector element of surface area on the edge of the disk is

d ~A =
n̂ ρdζdh

n̂ · ρ̂
, (24)

where ρ̂ is the unit vector in the ρ direction. The unit vectors normal to the surface of the
disk are calculated numerically (see Appendix A for additional discussion).

The Main Disk: The height of the main disk is a power law in a:

Hmain = Hedge

(
a− amin

amax − amin

)βH
, (25)

where Hedge is the height of the main disk at its outer edge (see Figure 4). Note that the disk
tapers to Hmain = 0 at its inner edge, so its inner edge does not have any vertical extent.
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The dependence of the temperature on radius can be either an arbitrary power law
or the distribution corresponding to a steady-state, optically-thick, viscous disk. The power
law is

Tmain =

{
KaβT , amin ≤ a ≤ amax

0, otherwise
. (26)

The normalization constant K is set so that the temperature distribution gives the desired
total luminosity of the main disk. It is calculated from

Lmain = 2
∫ amax

amin

σT 4
main2πr dr, (27)

where Lmain is the desired luminosity. The temperature distribution for a steady-state viscous
disk is given by

T 4
main =


K

a3

[
1−

(
amin
a

)1/2
]
, amin ≤ a ≤ amax

0, otherwise

, (28)

where, once again, the normalization constant K is set to give the desired total disk lumi-
nosity through equation 27.

The main disk may also have localized spots that are hotter or colder than the tem-
perature given by equation 26. The properties of each spot are specified by its boundaries
in ζ and a: (ζmin, ζmax, amin, amax); and by its temperature, which is specified by the ratio
Tspot/Tmain. Note that specifying the temperature this way means that the temperature
varies from point to point within a spot as Tmain varies. If there is more than one spot and if
the spots overlap, the fraction by which the temperature in the overlap regions are reduced
is the product of the factors for the individual overlapping spots.

The Disk Edge: The outer edge of the disk is everywhere perpendicular to the orbital
plane. Its height is equal to the sum of the heights of the main disk and the disk rim at
amax. The edge has the same temperature everywhere except for a rectangular spot with
uniform temperature that extends from the bottom of the disk edge to its top. The position
of the spot is specified by ζmid and ζwidth, the location of the center of the spot and its full
width. If the temperature of the spot is less than the temperature of the rest of the edge,
the program ignores the spot.

The Disk Rim: The cross section of the of the disk rim is a quarter ellipse in a:

Hrim = Hrim(ζ)

[
1.0−

(
amax − a
awidth

)2
]1/2

(29)

where Hrim(ζ) is the height of the rim at a = amax and Hrim = 0 outside the range amax ≥
a ≥ (amax − awidth). Note that the rim is flat topped since dHrim/da = dHrim/dρ = 0 at
a = amax, but Hrim + Hmain is generally not flat topped. The height of the rim can vary
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Figure 5: Side view of the disk and disk rim, defining the meaning of the rim parameters.

around the disk by making Hrim(ζ) vary with ζ. Hrim(ζ) can be specified in either of two
ways. It can be a sinusoidal function of ζ:

Hrim(ζ) =
1

2
(Hmax +Hmin) +

1

2
(Hmax −Hmin) cos(ζ − ζmax) (30)

or it can be specified by its value at a series of points around the rim:

ζ1 Hrim(ζ1)
ζ2 Hrim(ζ2)
...

...
ζn Hrim(ζn)

The value of Hrim(ζ) between the points is calculated by linear interpolation.

The outer side of the disk rim is vertical and takes on the same temperature as the
edge of the main disk. In other words, it is handled as an extension of the disk edge.

The temperature on the inner side of the rim is a function of only ζ. The temperature
can be specified in either of two ways. It can be a sinusoidal function of ζ:

Trim(ζ) =
1

2
(Tmax + Tmin) +

1

2
(Tmax − Tmin) cos(ζ − ζmax) (31)

or it can be specified by its value at a series of points around the rim:

ζ1 Trim(ζ1)
ζ2 Trim(ζ2)
...

...
ζn Trim(ζn)

The value of Trim(ζ) between the points is calculated by linear interpolation. If the temper-
ature of the rim at any ζ drops below the temperature of the underlying main disk at that
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Figure 6: Side view of the disk and disk torus, defining the meaning of the torus parameters.

point, the temperature of the rim there is set to the temperature of the underlying main
disk.

The Disk Torus: The cross section of the of the disk torus is a half ellipse in a:

Htorus = Htorus(ζ)

1.0−
(
azero − a
awidth/2

)2
1/2 (32)

where Htorus(ζ) is the height of the rim at a = azero and Htorus = 0 for |azero− a| > awidth/2.
The height of the torus can vary around the disk by making Htorus(ζ) vary with ζ. Htorus(ζ)
can be specified in either of two ways. It can be a sinusoidal function of ζ:

Htorus(ζ) =
1

2
(Hmax +Hmin) +

1

2
(Hmax −Hmin) cos(ζ − ζmax) (33)

(the values of Hmin, Hmax, and ζmax here will generally be different from their values in
equation 30), or it can be specified by its value at a series of points around the rim:

ζ1 Htorus(ζ1)
ζ2 Htorus(ζ2)
...

...
ζn Htorus(ζn)

The value of Htorus(ζ) between the points is calculated by linear interpolation.

The temperature on the torus is a function of only ζ. Its temperature can be specified
in either of two ways. It can be a sinusoidal function of ζ:

Ttorus(ζ) =
1

2
(Tmax + Tmin) +

1

2
(Tmax − Tmin) cos(ζ − ζmax) (34)

(again, the values of Tmin, Tmax, and ζmax here will generally not be the same as their values
in equation 31) or it can be specified by its value at a series of points around the rim:
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ζ1 Ttorus(ζ1)
ζ2 Ttorus(ζ2)
...

...
ζn Ttorus(ζn)

The value of Ttorus(ζ) between the points is calculated by linear interpolation. If the tem-
perature of the torus at any point drops below the temperature of the underlying main disk
at that point, the temperature of the torus there is set to the temperature of the underlying
main disk.

The Inner Disk: The primary reason for including the inner disk is to allow irradiation
of the outer disk and the secondary star from a hot source at the center of the disk when the
compact star is a black hole. The inner disk differs from a star (or any other quasi-spherical
source) because it is flat, has zero thickness, and lies entirely in the orbital plane.

The flux from the inner disk is handled in much the same way as the flux from the
primary star except for the different geometry. The flux at a distance d from the inner disk
is

Fid =
Lid

2πd2
cos θ. (35)

The flux from an inner disk with radius Rid seen by a distant observer is

F(λ) = πR2
id I(λ) cos θ. (36)

Making use of the definition of effective temperature Lid = 2πR2
idσT

4
id, we find

Fid(λ) =
Lid

2σT 4
id

I(λ) cos θ =
Lid

2πσT 4
id

B(λ) cos θ (37)

where B(λ) is given by equation 7. Equation 35 can be used to calculate irradiation and
heating by the inner disk and equation 37 can be used to calculate the direct contribution
of flux from the inner disk to the light curve.

V. The Properties of the Accretion Disk Corona

The accretion disk corona (ADC) model used in XRbinary Version 2.1 is extremely
primitive. It allows one to calculate approximate orbital lightcurves at ultraviolet to infrared
wavelengths that include the effects of heating by the ADC. But there is no direct flux from
the ADC at any wavelength, including X-ray wavelengths – this must await the next version
of the program. Furthermore, the ADC is approximated by two point sources of flux, one
directly above and one directly below star 1, each emitting half the total flux from the ADC.

The ADC has luminosity LADC and the two points are located at x = 0, y = ±hadc,
z = a. The flux at a distance d from one point is

FADC =
1

2

LADC
4πd2

. (38)
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The choice of hADC is open to the user. One possibility is to place the points at the “centers
of gravity” of the emission from the upper and lower halfs of the ADC. With this choice a
cylindrical ADC extending from y = −H to H with uniform emission would be represented
by two points at y = ±H/2.

VI. The Orbital Light Curves

VI.1 The Basic Calculation

The observed wavelength-dependent flux from the system is given by

F(λ) =
∫
I(Teff , g, µ, λ) n̂o · d ~A (39)

where the integral is taken over all visible surfaces in the system, and

I = the local specific intensity

Teff = local effective temperature

g = local gravity

µ = n̂o · n̂
λ = wavelength

The light curve is generally measured in a bandpass X (a “filter”) characterized by a nor-
malized response function

RX(λ) = SX(λ) /
∫
SX(λ)dλ, (40)

where SX is the unnormalized response function. The observed flux density is, then,

FX =
∫
RX(λ)F(λ)dλ. (41)

FX is a function of orbital phase; the light curve is a plot of FX against orbital phase.

For the most accurate calculations, equation 41 needs a large grid of specific intensities
as a function of Teff , log g, µ, and λ. The calculations can be simplified by assuming that
the angular dependence can be separated into a limb-darkening function, and that the limb-
darkening coefficients are constant and equal to their values at a wavelength, λX . The specific
intensity becomes, then:

I = I⊥(Teff , g, λ) H(Teff , g, µ, λX) (42)

where H(Teff , g, µ, λX) is the limb darkening function and I⊥(Teff , g, λ) is the specific in-
tensity emitted perpendicular to the surface

I⊥(Teff , g, λ) = I(Teff , g, µ = 1, λ). (43)
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Equation 41 now simplifies to

FX =
∫ [∫

RX(λ)I⊥(Teff , g, λ)dλ
]
H(Teff , g, µ, λX) n̂o · d ~A (44)

The integral over wavelength is independent of geometry and can, therefore, be precalculated.
Defining

Ī⊥X(Teff , g) =
∫
RX(λ)I⊥(Teff , g, λ)dλ, (45)

equation 44 takes the simple form

FX =
∫
Ī⊥X(Teff , g) H(Teff , g, µ, λX) n̂o · d ~A, (46)

where the intergral is taken over all visible surfaces. Equation 46 is the basic working
equation for the XRbinary program.

VI.2. The Use of Ray Tracing to Determine Visibility

The previous section contains integrals that must be evaluated over all visible surfaces
in the system. To determine visibility the program traces rays emitted by the surfaces of the
various components of the binary system in the direction of the sun. A surface element is
deemed visible if a ray from the element escapes the binary without passing through any other
surface element. Ray tracing is computationally intensive (more than 99% of the programs
computational effort is spent on ray tracing) but can handle complicated geometries. For
example, XRbinary correctly handles the visibility of features that are on the lower surface
of the disk but are visible through the hole in the center of the disk. Pixelization causes
complications for ray tracing algorithms; see comments in the code for a brief discussion.

VI.3. The Flux from the Secondary Star

The filter sets currently incorporated into the program are the Johnson UBV, the
Cousins RI, and the Johnson JHK sets. In addition, one can specify one or more sharp-
edged, flat bandpasses between pairs of wavelengths (the “SQUARE” bandpass). The square
bandpass assumes the emitting body is a black body with no limb darkening – a poor
approximation to the secondary star unless it is heated by irradiation. A full discussion
of Ī⊥X(Teff , g) for the filters and square bandpasses is given in Appendix C. The program
calculates the light curves in all filters and bandpasses simultaneously.

For temperatures greater than 3500 K and less than 8000 K, the program uses the
Kurucz spectra available in the STScI calibration database. See Appendix C for a full
discussion.

We adopt the limb darkening law proposed by Claret (2000, Astron. & Astrophys.,
363, 1081):

H(µ) =
I(µ)

I⊥
= 1− a1(1− µ1/2)− a2(1− µ)− a3(1− µ3/2)− a4(1− µ2) (47)
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Figure 7: Examples of limb darkening from Claret (2000, Astron. & Astrophys., 363, 1081).
Left figure: log g = 4.0, Teff = 3500. Right figure: log g = 4.5, Teff = 4500. In both cases
the figures correspond to the filters (from bottom to top) Stromgren v and y, and Cousins
R and I.

This law does a much better job of reproducing the limb darkening near the limb than more
traditional laws. The coefficients ai have been taken from the extensive tables for various
filters published by Claret in electronic form on the CDS. Figure 7 shows examples of the
limb darkening.

For temperature less than 3500 K and greater than 8000 K, the program currently
adopts black body radiation with no µ dependence. The point of the upper limit is that
local effective temperatures of the secondaries of low-mass X-ray binaries are not generally
greater than 8000 K unless the star has been heated by irradiation. Irradiated atmospheres
can depart so greatly from normal stellar atmospheres (specifically, T (τ) can be greatly
disturbed) that normal atmospheres are poor approximations to the true atmosphere and it
is safer to default to black body radiation. The lower limit is set by limitations of the model
atmospheres.

VI.4. The Flux from the Primary Star and the Accretion Disk

The program currently assumes that the flux emitted by primary star and the accretion
disk has a black body distribution with no limb darkening. The program can handle black
body fluxes for the same filter sets as the Kurucz atmospheres (UBVRIJHK and and square
bandpasses).
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Figure 8: The geometry for calculating heating due to irradiation.

VII. Irradiation

Let flux be emitted from an element of surface area d ~AE = n̂EdSE and absorbed by a
small surface area ∆ ~AA = n̂A∆SA, where n̂E and n̂A are the unit vectors normal to the two
surface areas and dSE and ∆SA are the (scalar) areas. Note that ∆SA has a small but finite
area. The distance between the centers of the two surface elements is d and the unit vector
from the center of d ~AE to the center of ∆ ~AA is n̂d (see Figure 8). The flux emitted by area

d ~AE towards ∆ ~AA is

δFE =
[∫
λ
IE(µE, λ)dλ

]
n̂d · d ~AE =

[∫
λ
I⊥E(λ) HE(µE, λ)dλ

]
µEdSE, (48)

where I⊥E(λ) is the specific intensity emitted perpendicular to d ~AE, HE(µ, λ)) is the limb

darkening at d ~AE and µE = n̂d · n̂E. The solid angle subtended by ∆ ~AA as seen from d ~AE is

∆ΩA = − n̂d ·∆
~AA

d2
= −µA∆SA

d2
, (49)

where µA = n̂d · n̂A. The amount of flux intercepted by ∆ ~AA is, therefore,

δFA = δFE ∆ΩA

= −
[∫
λ
I⊥E(λ) HE(µE, λ)dλ

]
µEµA
d2

dSE∆SA. (50)

Many surface elements will irradiate ∆ ~AA. The total flux falling on ∆ ~AA is the integral over
all the emitting areas visible from ∆ ~AA:

∆FA = ∆SA

∫ [∫
λ
I⊥E(λ) HE(µE, λ)dλ

]
µEµA
d2

dSE. (51)

Let the effective temperature of ∆SA before it is heated by irradiation be T0A, so that
the flux it emits before heating is FA = σT 4

0A∆SA. If the fraction of the intercepted flux
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that is thermalized and re-emitted is the albedo α, the effective temperature of the surface
becomes

∆SAσT
4
A = FA + α∆FA

T 4
A = T 4

0A +
α

σ

∫ [∫
λ
I⊥E(λ) HE(µE, λ)dλ

]
µEµA
d2

dSE. (52)

Since the heat capacity of the disk is low and advection is usually not important, it is likely
that most of the energy absorbed by the disk is reradiated where it is absorbed. This implies
α = 1.0 for the disk. One typically adopts α = 0.5 for the secondary but this value has little
justification. If the secondary is heavily irradiated for a long period of time, an value of α
closer to 1 may be more appropriate. In any case, XRbinary requires the user to provide
values of alpha for the disk and secondary star.

Under some conditions equation 52 can be much simplified. If the emitting surface is
a black body – which is true for all parts of the disk and inner disk, the emitted flux reduces
to ∫

λ
I⊥E(λ) HE(µE, λ)dλ =

σ

π
T 4
E (53)

and equation 52 becomes

T 4
A = T 4

0A +
α

π

∫ µEµA
d2

T 4
E dSE. (54)

If the emitting body is a neutron star with luminosity L1, equation 51 is replaced by

∆FA = L1
∆ΩA

4π
= L1

µA
4πd2

∆SA (55)

and equation 52 is replaced by

T 4
A = T 4

0A +
α

σ

µA
4πd2

L1. (56)

Equations 55 and 56 L1 replaced by LADC/2 are also appropriate for irradiation by
the ADC in the simple point-approximation model.

The angular and wavelength dependence of the radiation emitted from a surface heated
by irradiation cannot be determined without detailed radiative transfer models. The current
version of the program assumes that the irradiated disk, like the un-irradiated disk, emits like
a black body. The heated secondary star is assumed to emit like a normal stellar atmosphere
where its temperature is less than 8000 K and like a black body where its temperature is
greater than 8000 K.

The integrals in equations 51 and 52 must be evaluated over all the emitting areas
visible from ∆ ~AA. The program uses ray tracing to determine visibility and, again, this is
extremely computationally intensive.
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The XRbinary program currently allows irradiative heating of the outer accretion disk
by the primary star, the inner disk and the ADC; and heating of the secondary star by the
primary star, and both the inner and outer accretion disk, and the ADC. The outer disk
does not heat itself.
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Appendix A. The Coordinate Systems Used by XRbinary

A.1. The Three Coordinate Systems

XRbinary uses three different coordinate systems:

1. A Cartesian coordinate system centered on the secondary star.

2. A spherical polar coordinate system centered on the secondary star.

3. A cylindrical coordinate system centered on the primary star.

All three rotate so that all components of the binary system remain at fixed positions in the
coordinate systems. The Cartesian coordinate system (x, y, z) is specified by (see Figure 9):

– The origin is at the center of mass of star 2.

– The z axis points at the center of star 1.

– The x axis lies in the plane of the orbit and points in the direction of motion of star 2
in its orbit.

– The y axis is oriented so as to make a right-handed coordinate system. The vector
angular velocity, ~ω, points in the −y direction.

The spherical polar coordinate system (r, θ, φ) is specified by:

– The origin is at the center of mass of star 2.

– The r coordinate is the distance from the origin.

– The θ = 0 direction points at the center of star 1.

– The φ = 0 direction lies in the orbital plane and points in the direction of motion of
star 2 in its orbit; φ increases in a right-handed sense about the θ = 0 direction; and
~ω points in the θ = π/2, φ = 3π/2 direction.

A cylindrical coordinate system (ρ, ζ, h) star is specified by (see Figure 10):

– The origin is at the center of mass of star 1.

– The h axis is anti-parallel to ~ω.

– The ρ coordinate is the perpendicular distance from the h axis.

– The ζ = 0 direction points away from star 2; ζ increases in the right-handed sense
about the h axis
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Figure 9: The spherical polar and Cartesian coordinate systems centered on the secondary
star.
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Figure 10: The cylindrical coordinate system centered on the primary star, and its relation
to the Cartesian coordinate system centered on the secondary star.
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In spherical polar coordinates the explicit forms of r1, r2, and ρcm used in Section III.1
are

r21 = a2s + r2 − 2asr cos θ = a2s + r2 − 2asr n

r2 = r (A.1)

ρ2cm = r2 sin2 θ cos2 φ+ (r cos θ − rcm)2 = r2 l2 + (r n− rcm)2

where angles θ and φ and direction cosines l and n are defined by equations A.4, and rcm is
the distance from the center of star 2 to the center of mass.

The unit vector pointing toward the Earth is n̂o. The orbital inclination, i, is the angle
between n̂o and the y axis of the Cartesian coordinate system (or, alternatively, the angle
between n̂0 and the negative rotation axis). In Cartesian coordinates n̂0 is given by

n̂o = −ı̂ sin i sin p+ ̂ cos i− k̂ sin i cos p (A.2)

where (̂ı, ̂, k̂) are the unit vectors along the coordinate axes, and p is the orbital phase. Note
that n̂o rotates counterclockwise(!) around the y axis, and p = 0 when n̂o points in the −z
direction. Phase zero is, therefore, the phase of inferior conjunction of star 2 (star 2 in front
of star 1). Note that i = 90◦ when the observer is in the plane of the orbit.

A.2. Transformations between Cartesian and Spherical Polar Coordinates

Let (x, y, z) and (r, θ, φ) be the usual coordinates in the Cartesian and spherical polar
coordinate systems. The transformations from (r, θ, φ) to (x, y, z) coordinates are

x = r l = r sin θ cosφ

y = rm = r sin θ sinφ (A.3)

z = r n = r cos θ

where l, m, and n are the direction cosines:

l = sin θ cosφ

m = sin θ sinφ (A.4)

n = cos θ

The reverse transformations are

r2 = x2 + y2 + z2

cos θ =
z

(x2 + y2 + z2)
1
2

(A.5)cosφ =
x

(x2 + y2)
1
2

sinφ =
y

(x2 + y2)
1
2
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In the Cartesian coordinate system a vector ~A is written

~A = Axı̂+ Ay ̂+ Azk̂ (A.6)

where ı̂, ̂, and k̂ are the unit vectors in the x, y, and z directions, and Ax, Ay, and Az are
the components of the vector; and in spherical polar coordinates the vector is written

~A = Arr̂ + Aθθ̂ + Aφφ̂ (A.7)

where r̂, θ̂, and φ̂ are unit vectors in the r, θ, and φ directions, and Ar, Aθ, and Aφ are the
components of the vector. The unit vectors transform by

ı̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ

̂ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ (A.8)

k̂ = r̂ cos θ − θ̂ sin θ

and, therefore, the components transform by Ax
Ay
Az

 =

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


 Ar
Aθ
Aφ

 (A.9)

 Ar
Aθ
Aφ

 =

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


 Ax
Ay
Az

 (A.10)

and the values of the trigonometric functions in equation A.10 come from equations A.5.

A.3. Transformations between Cartesian and Cylindrical Coordinates

Let (ρ, ζ, h) be the cylindrical coordinates. The orientation and displacement of the
cylindrical coordinate system from the Cartesian coordinate system are shown in Figure 10.
The transformations from (ρ, ζ, h) to (x, y, z) coordinates are

x = ρ sin ζ

y = h (A.11)

z = ρ cos ζ + a

where a is the separation of the centers of mass of the two stars. The reverse transformations
are

ρ2 = x2 + (z − a)2

cos ζ =
z − a

[x2 + (z − a)2]
1
2

(A.12)sin ζ =
x

[x2 + (z − a)2]
1
2

h = y
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A vector in cylindrical coordinates a vector is written

Â = Aρρ̂+ Aζ ζ̂ + Ahĥ (A.13)

The transformations of the components of vectors between cylindrical and Cartesian coor-
dinates are then  Ax

Ay
Az

 =

 sin ζ cos ζ 0
0 0 1

cos ζ − sin ζ 0


 Aρ
Aζ
Ah

 (A.14)

 Aρ
Aζ
Ah

 =

 sin ζ 0 cos ζ
cos ζ 0 − sin ζ

0 1 0


 Ax
Ay
Az

 (A.15)

A.4. The Gradient Operator

The explicit form of the gradient operator in the Cartesian coordinate system is

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z
, (A.16)

where ı̂, ̂, and k̂ are the unit vectors in the x, y, and z directions. Its explicit form in the
cylindrical coordinate system is

∇ = ρ̂
∂

∂ρ
+ ζ̂

(
1

ρ

)
∂

∂ζ
+ ĥ

∂

∂h
, (A.17)

where ρ̂, ζ̂, and ĥ are the unit vectors in the ρ, ζ, and h directions. Its form in the spherical
polar coordinate system is

∇ = r̂
∂

∂r
+ θ̂

(
1

r

)
∂

∂θ
+ φ̂

(
1

r sin θ

)
∂

∂φ
, (A.18)

where r̂, θ̂, and φ̂ are the unit vectors in the r, θ, and φ directions.

A.5. The Normal Vector

In Cartesian coordinates the normal vector is

n̂ = nxx̂+ nyŷ + nz ẑ. (A.19)

Referring to Figure 11, we have
nx
nz

= −∂f
∂x

(A.20)

or

nx = −∂f
∂x
nz (A.21)
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A similar relation holds for ny:

ny = −∂f
∂y
nz (A.22)

and thus we have

n̂ = −∂f
∂x
nz x̂−

∂f

∂y
nz ŷ + nz ẑ (A.23)

In fact, we do not know nz, so we actually have

n̂ = β

[
−∂f
∂x

x̂− ∂f

∂y
ŷ + ẑ

]
(A.24)

where β is set by the normalization condition |n̂| = 1, giving

β =

(∂f
∂x

)2

+

(
∂f

∂y

)2

+ 1

−1/2 (A.25)

nz

nx

n

dx

z

x

f(x,y)

df

Figure 11: A cut through the surface defined by the function z = f(x, y). The cut is parallel
to the (x, z) plane. The vector n̂ is normal to the surface. The projection of the normal onto
the plane of the cut has components nx and nz.

Equation A.24 can be generalized to an arbitrary coordinate system by defining an
auxiliary function V :

V = z − f(x, y) (A.26)

and then the surface normal is given by

n̂ =
∇V
|∇V |

(A.27)

Note that all of the derivatives in equation A.27 must remain finite over the region of interest.
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For the surface h = g(ρ, ζ) in the cylindrical coordinate system (ρ, ζ, h), equation A.27
yields

n̂ ∝ −∂g
∂ρ

ρ̂− 1

ρ

∂g

∂ζ
ζ̂ + ĥ (A.28)

with an obvious normalization factor.

A.6. The Surface Element

For the surface in the (x, y, z) coordinate system shown in Figure 11 the element of
surface area is

d ~A =
n̂dS

n̂ · ẑ
(A.29)

where dS is an element of area in a flat plane parallel to the (x, y) coordinate plane:

dS = dxdy (A.30)

The factor 1/(n̂ · ẑ) is the projection factor from the surface to the flat plane. Carrying out
the operations explicitly we find

d ~A =

(∂f
∂x

)2

+

(
∂f

∂y

)2

+ 1

1/2 n̂ dxdy (A.31)

or, equivalently,

d ~A =

(
−∂f
∂x
x̂− ∂f

∂y
ŷ + ẑ

)
dxdy (A.32)

and either form can be used, depending on which is more convenient. In cylindrical coordi-
nates the element of surface area is

d ~A =

(∂g
∂ρ

)2

+

(
1

ρ

∂g

∂ζ

)2

+ 1

1/2 n̂ ρdρdζ (A.33)

or, equivalently,

d ~A =

(
−∂g
∂ρ
ρ̂− 1

ρ

∂g

∂ζ
ζ̂ + ĥ

)
ρdρdζ (A.34)

24



Appendix B. The Restricted Three-Body Problem and
Zero-Velocity Surfaces

B.1. The Basic Equation of the Restricted Three-body Problem

Assume that the only force acting between two particles, is Newtonian gravity:

~F = −Gm1m2~r

|r|3
(B.1)

where ~F is the force acting between the two particles, G is the gravitational constant, m1

is the mass of particle 1, m2 is the mass of particle 2, and ~r is the vector distance between
them. Under these conditions Kepler’s third law holds:

G (m1 +m2) = ω2a3 (B.2)

ω =
2π

P
(B.3)

where ω is the mean orbital angular velocity, a is the separation of the particles, and P is
the orbital period.

In the restricted three-body problem, particles 1 and 2 are constrained to move in
circular orbits around each other and a third particle, with mass m much less than m1 and
m2, is moving under the influence of their gravity. The equation of motion for the third
particle is

m~̈r = ~F1 + ~F2 = −Gmm1~r1
|r1|3

− Gmm2~r2
|r2|3

(B.4)

where ~r1 and ~r2 are the vectors from masses m1 and m2 to mass m.

It is convenient to use a coordinate system that has its origin at the center of mass
and rotates with angular velocity ~ω, where ~ω is perpendicular to the orbital plane, so that
m1 and m2 remain stationary in the coordinate system. The center of mass of the binary is
at a distance

zcm =
m1

m1 +m2

a =
1

1 + q
a (B.5)

from mass m2, where q = m2/m1.

To convert ~̈r to the rotating coordinate system, use the relation

d ~A

dt
=

d∗ ~A∗

dt
+ ~ω × ~A∗ (B.6)

where the unstarred derivative is taken in the non-rotating coordinate system, the starred
derivative is taken in the rotating coordinate system, and ~A is an arbitrary vector, unstarred
in the stationary frame and starred in the rotating frame. Successive applications of this
relation yield

~̈r =
d2~r

dt2
=

d∗2~r∗

dt2
+ 2~ω × d∗~r∗

dt
+

d∗~ω

dt
× ~r∗ + ~ω × (~ω × ~r∗) (B.7)
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Since this is the restricted three-body problem, d~ω/dt = d∗~ω/dt = 0, and the equation of
motion in the rotating frame simplifies to

m
d∗2~r∗

dt2
+ 2m~ω × d∗~r∗

dt
+ m~ω × (~ω × ~r∗) = ~F1 + ~F2 (B.8)

From now on we will work in the rotating frame, so we can drop the asterisks without
confusion and retrieve the standard form of the equation of motion for the restricted three-
body problem

m~̈r = − Gmm1~r1
|r1|3

− Gmm2~r2
|r2|3

− m~ω × (~ω × ~r) − 2m~ω × ~̇r (B.9)

B.2. Jacobi’s Integral

Jacobi’s Integral is essentially an energy integral. To derive it, use the cylindrical
coordinate system with coordinates (ρ, θ, z) specified by

– The origin is at the center of mass.

– The z axis is parallel to ~ω

– ρ is the perpendicular distance from the z axis. ~ρ = ρρ̂, where ρ̂ is the unit vector in
the ρ direction.

– θ is the angle measured around z axis

In this coordinate system ~r and ~ω are given by

~r = z ẑ + ~ρ (B.10)

~ω = ω ẑ (B.11)

where ẑ is the unit vector in the z direction. The centrifugal force now simplifies to

−m~ω × (~ω × ~r) = −mω2ẑ × [ẑ × (ẑ + ~ρ)]

= −mω2ẑ × (ẑ × ~ρ)

= +mω2~ρ (B.12)

and the equation of motion becomes

m~̈r = − Gmm1~r1
|r1|3

− Gmm2~r2
|r2|3

+ mω2~ρ − 2m~ω × ~̇r (B.13)

Dot the velocity vector ~̇r into both sides of the equation of motion. Since

(2m~ω × ~̇r) · ~̇r = 0 (B.14)

~ρ · ~̇r = ~ρ · (żẑ + ~̇ρ) = ~ρ · ~̇ρ (B.15)
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the basic equation collapses to

m~̈r · ~̇r = − Gmm1~r1
|r1|3

· ~̇r − Gmm2~r2
|r2|3

· ~̇r + mω2~ρ · ~̇ρ (B.16)

Using the identity ~̇r = ~̇r1 = ~̇r2, this equation integrates to

d

dt

(
1

2
m~̇r · ~̇r

)
=

d

dt

(
Gmm1

r1

)
+

d

dt

(
Gmm2

r2

)
+

d

dt

(
1

2
mω2~ρ · ~ρ

)
(B.17)

and, finally, we find Jacobi’s integral

V =
1

2
v2 − Gm1

r1
− Gm2

r2
− 1

2
ω2ρ2 (B.18)

We recognize V as total energy per unit mass.

B.3. Zero-Velocity Surfaces

For v = 0, Jacobi’s integral reduces to

V = − Gm1

r1
− Gm2

r2
− 1

2
ω2ρ2 (B.19)

This is usually put in the form

V =
Gm1

a

[
− a

r1
− q a

r2
− 1

2
(1 + q)

(ρ
a

)2]
(B.20)

where, again, q = m2/m1 is the mass ratio. The loci of constant V are the zero-velocity
surfaces.
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Appendix C. Calculation of I⊥ and Ī⊥X

C.1. Mean Specific Intensities through Filters

Intensities for Theoretical Stellar Spectra: The specific intensity perpendicular to the
surface of a star, I⊥, is not generally available in the literature, so it has been calculated from
fluxes and limb darkening, which are available. On the other hand, the published descriptions
of the way in which the mean fluxes through filter bandpasses have been calculated are
inscrutable. To avoid misinterpretation, the mean fluxes have been calculated from scratch.

We first calculate the mean flux density in bandpass X from an element of the surface
of a star:

F̄X =
∫
RX(λ)F (λ)dλ, (C.1)

where F (λ) is the flux per unit area as a function of wavelength in ergs/cm/s/Å and RX(λ)
is the normalized response function for the bandpass:∫

RX(λ)dλ = 1. (C.2)

For the fluxes, we adopt the Kurucz spectra in the STScI calibration database (circa 1992).
These spectra are whole-disk fluxes as a function of wavelength typically sampled at 10 Å
intervals over the wavelengths of interest. To be explicit: The fluxes tabulated in the Kurucz
models have the same meaning as black body fluxes given by

B(λ) =
2πhc2

λ5
1

exp(hc/λkT )− 1
(C.3)

and in regions not heavily line-blanketed have values roughly similar to black body fluxes.
Figure 12 compares the Kurucz spectrum for T = 6000 K and log g = 4.0 to the flux from a
black body at the same temperature calculated from equation C.3. The Kurucz spectra for
a selection of other temperatures are shown in the top panel of Figure 13.

The filter transmissions for the Johnson UBV and Cousins RI filters have been taken
from Bessell (1990, PASP, 102, 1181); and the transmissions for the JKL filters have been
taken from Bessell & Brett (1988, PASP, 100, 1134). Note that the U and B passbands are
actually the UX and BX passbands. Also note that the bottom few lines of Table IV in
Bessell & Brett (1988) have a typo that displaces the entries by one column. The effective
wavelengths of the bandpasses are given in the following table (Bessel 1988, 1990), where
the effective wavelengths of the UBVRI filters are calculated for a K0III star and those of
the JKL filters for an A0V star.

Filter: U B V R I J H K
λeff : 3656 Å 4537 Å 5524 Å 6535 Å 8028 Å 1.22 µm 1.63 µm 2.19 µm

The passbands of the UBVRI filters are shown in the lower panel of Figure 13.
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Figure 12: A comparison of the Kurucz spectrum for T = 6000 K and log g = 4.0 to the flux
from a black body at the same temperature calculated from equation C.3

The relation between flux and specific intensity at the surface of a star is

F (λ) = 2π
∫ 1

0
I(λ, µ)µdµ = 2πI⊥(λ)

∫ 1

0
H(µ)µdµ, (C.4)

where µ = cos θ is the angle between the light ray and the vector normal to the surface of
the star. The second equality comes from setting:

I(λ, µ) = I⊥(λ)H(µ), (C.5)

where I⊥(λ) is the specific intensity perpendicular to the surface of the star, I⊥(λ) = I(λ, 1),
and H(µ) is the limb-darkening law, normalized so that H(1) = 1. Equation C.5 is in essence
the definition of limb darkening.

If one wants the monochromatic fluxes and intensities, equation C.4 is the final result
since, after rearranging,

I⊥(λ) = F (λ)/
[
2π
∫ 1

0
H(µ)µdµ

]
. (C.6)

We are, however, interested in the fluxes measured in a bandpass, and so we multiply equa-
tion C.4 by RX(λ) and integrate over λ to get

F̄X = 2πĪ⊥X

∫ 1

0
HX(µ)µdµ, (C.7)

where
Ī⊥X =

∫
RX(λ)I⊥(λ)dλ (C.8)
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Figure 13: Lower panel: The response functions for the UBVRI passbands. Upper panel: A
selection of Kurucz spectra used to calculate the mean flux densities. All the spectra have
log(g) = 4.0; the temperatures are 3500 K, 4000 K, 4500 K, 5000 K, 5500 K, and 6000 K.
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and so Ī⊥X is given by

Ī⊥X = F̄X/
[
2π
∫ 1

0
HX(µ)µdµ

]
. (C.9)

Note that we have explicitly assumed that H(µ) is independent of wavelength and equal to
HX(µ) within bandpass X.

We adopt the limb darkening law proposed by Claret (2000, Astron. & Astrophys.,
363, 1081):

HX(µ) =
ĪX(µ)

Ī⊥X
= 1− a1(1− µ1/2)− a2(1− µ)− a3(1− µ3/2)− a4(1− µ2). (C.10)

The coefficients ai have been taken from the extensive tables for various filters published
by Claret in electronic form on the CDS. Note that the integral of the Claret law can be
evaluated analytically:∫ 1

0
HX(µ)µdµ = 2

[
1

4
(1− a1 − a2 − a3 − a4) +

a1
5

+
a2
6

+
a3
7

+
a4
8

]
. (C.11)

Intensities for Black Body Spectra: For a black body spectrum, the calculation is
somewhat simpler because the specific intensity is independent of µ (there is no limb dark-
ening):

dIX(µ)

dµ
= 0 (C.12)

and then, from equation C.10

HX(µ) =
ĪX(µ)

Ī⊥X
= 1. (C.13)

Equation C.6 becomes

I⊥(λ) =
1

π
B(λ) (C.14)

and we have the obvious result

ĪX(µ) = Ī⊥X =
1

π

∫
RX(λ)B(λ)dλ (C.15)

Note that the mean intensity through filter X calculated from equation C.15 will not agree
with the intensity calculated from equation C.9 even where a black body is a good approx-
imation to the fluxes in a stellar spectrum because the black body intensity is not limb
darkened.
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C.2. Mean Specific Intensities in a Rectangular (Sharp-Edged) Bandpass

For a black body spectrum, the mean specific intensity in a bandpass from λa to λb is

Īab =
1

π(λb − λa)

∫ λb

λa
B(λ)dλ (C.16)

Defining

ζ =
hc

λkT
, (C.17)

we recast equation C.16 into the form

Īab =
T 4

λb − λa
[Z(ζb)− Z(ζa)] (C.18)

where

Z(ζ) =
2k4

h3c2

∫ ζ

0

x3dx

exp(x)− 1
. (C.19)

For convenience and speed, the function Z(ζ) is calculated off line and saved in a table. Note
that Z(∞) = σ/π = 1.8049× 10−5, which may be useful as an error check.
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Appendix D. Description of the Input Files and Parameters

XRbinary was written for a Linux operating system but should run under most Unix-
like operating systems. XRbinaryV2.x is invoked by the command

XRbinaryV2.x.exe parfilename

where parfilename is the name of the file specifying the model parameters. The program
writes two output files whose names are based on parfilename:

parfilename.SysPars: The model parameters input from parfilename plus some
other useful information about the model. It also records the
value of χ2 if the model light curve was fitted to an observed
light curve.

parfilename.LC: The light curves calculated from the model.

D.1. The Input Files

The XRbinary program requires five tables providing information about specific inten-
sities and gravity darkening. These tables will generally not need to be modified by the user.

GDTable.dat: The gravity-darkening coefficients as a function of temperature.

LDTable.dat: The limb darkening coefficients for realistic spectra observed
through filters. This table is the companion to the table in
IperpTable.dat.

IperpTable.dat: The specific intensity perpendicular to the surface element for
realistic spectra observed through filters.

IBBfilterTable.dat: The mean specific intensities of black bodies observed through
filters.

ZzetaTable.dat: A table for use in calculating the mean intensities of black bodies
observed in a square-edged bandpass.

The parameter file parfilename consists of a series of keywords, one keyword per line
(see section D.2 below for an example of a parameter file). Most keywords are followed by a
list of numbers or words. The keywords and the meanings of their parameters are:

Miscellaneous keywords:

COMMENT= Comment line
blank line blank lines have no effect
END Terminates reading of the parameter file.
VERBOSE= ON or OFF

If ON, the program prints out information about what it is do-
ing.
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Figure D.1: The various components of the XRbinary model.

DIAGNOSTICS= OFF
or
keyword orbital-phase

If OFF, do not print diagnostic information.
If keyword, execute a diagnostic procedure. The diagnostic pro-
ceedures generally write information to files with a suffix “.in-
spect” and then halt the program.
Some available keywords:

NOCHECKPARS
INSPECTINPUT
INSPECTSYSPARS
INSPECTSTAR2TILES
INSPECTDISKTILES
INSPECTYLIMITS
INSPECTHEATING
INSPECTESCAPE

The INSPECTESCAPE keyword also requires an or-
bital phase, which is specified by orbital-phase.

Keywords that control the basic properties of the model (Figure D.1 shows the components
of the XRbinary model):

STAR1= ON or OFF
If ON, the primary star emits flux.

STAR2= ON or OFF
If ON, the secondary star emits flux.

STAR2SPOTS= ON or OFF
If ON, the secondary star can have up to 19 spots.

DISK= ON or OFF
If ON, the model contains an accretion disk.

DISKRIM= ON or OFF
If ON, the disk has a raised rim.
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DISKTORUS= ON or OFF
If ON, the disk has a raised torus at an intermediate radis.

INNERDISK= ON or OFF
If ON, the disk has a small, flat, inner disk.

DISKSPOTS= ON or OFF
If ON, the disk can have up to 19 spots.

ADC= ON or OFF
If ON, the disk has an ADC.

THIRDLIGHT= ON or OFF
If ON, the light curve has flux from a “third light.”

IRRADIATION= ON or OFF
If ON, the model includes heating by irradiation.

Keywords referring to the orbital light curve:

PHASES= phasemin phasemax deltaphase
The phase coverage and resolution of the orbital light curves in
fractions of the orbit. Phase 0.0 is the phase of inferior conjunc-
tion of the secondary star. The phases must be greater than -0.5
and less than 1.0.

PHASEOFFSET= phaseoffset
The offset of the orbital light curves in fractions of the orbit.
The light curves are calculated for (phase - deltaphase), ie, the
light curves are moved forward in phase by deltaphase.

BANDPASS= FILTER filtername
or
SQUARE minwavelength maxwavelength

If FILTER, calculate the lightcurve for the filter with name fil-
tername. Typical filter names are U, B, V, R, I, J, H, K etc.

If SQUARE, calculate the lightcurve in a bandpass bounded
by minwavelength and maxwavelength. The wavelengths are in
Ångstroms.
The program can calculate light curves in many bandpasses at
once, so parfile.dat can contain many lines beginning with this
keyword.

NORMALIZE= OFF
or
MAXVALUE maxvalue

If OFF, do not normalize the light curves
If MAXVALUE, normalize the flux to maxvalue at the phase of
maximum flux.

or
FITDATA filtername
or
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FITDATA SQUARE minlambda maxlambda
Normalize the light curve by calculating the multiplicative fac-
tor that minimizes the variance between the calculated and ob-
served light curves in either filter filtername or the square band-
pass bounded by wavelengths minlambda and maxlambda. The
wavelengths are in Ångstroms. The same normalization factor
is then applied to all the calculated light curves. The perti-
nent observed light curve must be read in by a READDATA=
statement.

Keywords referring to the whole system:

PERIOD= period
The orbital period in days.

K2= K2
The amplitude of the projected radial velocity curve in km/s.
Either K2 or M1 can be specified, but not both.

M1= M1
The mass of star 1 in solar masses. Either K2 or M1 can be
specified, but not both.

MASSRATIO= massratio
The mass ratio, q = m2/m1.

INCLINATION= inclination
The orbital inclination in degrees.

Keywords referring to star 1:

STAR1LUM= luminosity
The luminosity of star 1 in ergs/sec.

STAR1TEMP= temperature
The effective temperature of star 1 in Kelvins.

Keywords referring to star 2:

STAR2TILES= targetNtiles
The target number of tiles with which to cover the surface of star
2. The maximum number of tiles is 50,000; 5000 tiles should give
good results.

STAR2TEMP= meanTemperature
The mean temperature of star 2 in Kelvins.

STAR2ALBEDO= albedo
The albedo of star 2.
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Figure D.2: Top and side views of the eccentric disk. All disk properties are specified as
if the disk were circular with radial coordinate a. The disk is then “stretched” to make it
elliptical by means of the transformation ρ = a(1 − e2)/[1 + e cos(ζ − ζ0)], where ζ0 is the
longitude of periastron.

STAR2SPOT= theta phi radius Tratio
theta and phi are the coordinates of the spot center in the
spherical polar coordinate system. radius is the angular radius
of the spot as seen from the center of the secondary star. The
unit is degrees for all three.

Tratio is the ratio of the spot temperature to the local effective
temperature. If less than 1, the spot is cooler than the unspot-
ted star; and if greater than 1, it is hotter.

This keyword can appear multiple times, once for each spot.

Keywords referring to the accretion disk (see Figure D.2 shows the meaning of the parameters
for the eccentric disk):
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Note: All lengths are input as a fraction of the separation of the centers of mass of the two
stars.

DISKTILES= targetNtiles
The target number of tiles with which to cover the surface of
the disk. The maximum number of tiles is 50,000; 20,000 tiles
should give good results.

DISKE= eccentricity
The eccentricity of the elliptical disk.

DISKZETAZERO= periastron-angle
The angle of the periastron of the elliptical disk in degrees.

DISKALBEDO= albedo
The albedo of star 2.

Figure D.2 shows the meaning of the parameters for the main disk.

MAINDISKA= amin amax
The minimum and maximum semi-major axis of the main disk.

MAINDISKH= Hedge Hpow
The parameters in the function for the main disk height:

Hmain = Hedge

(
a− amin

amax − amin

)Hpow

.

MAINDISKT= VISCOUS maindiskL
The temperature distribution on the main disk will be that of a
steady-state, optically-thick, viscous disk (see equation 28).

maindiskL is the total luminosity of the disk.

or

POWERLAW Tpow maindiskL
The temperature distribution on the main disk will be a power
law in disk radius:

Tmain = KaTpow ,

with K set so that the total luminosity of the main disk is
maindiskL.

DISKEDGET= Tedge Tspot ZetaMid ZetaWidth
Tedge is the temperature of the edge of the disk. The spot has
temperature Tspot. If Tspot > Tedge, there is a spot on the edge
of the disk and the spot extends over

(ZetaMid− ZetaWidth/2)⇒ (ZetaMid+ ZetaWidth/2).

Both angles are in degrees.
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Figure D.3: Side view of the disk and disk rim, defining the meaning of the rim parameters.

DISKSPOT= ZetaMin ZetaMax aMin aMax Tratio
ZetaMin and ZetaMax are the minimum and maximum angles
over which the spot extends. If ZetaMin is greater than
ZetaMax, the spot extends from ZetaMin through ζ = 0 to
ZetaMax.

aMin and aMax are the minimum and maximum values of a over
which the spot extends. If the spot extends past the inner or
outer edge of the disk, it is truncated at the edge.
Tratio is fractional change in the disk temperature in the spot.
If less than 1, the spot is cooler than the unspotted disk; and if
greater than 1, it is hotter.

INNERDISKL= luminosity
The luminosity of the inner disk in ergs/sec.

INNERDISKT= temperature
The effective temperature of the inner disk in Kelvins.

Figure D.3 shows the meaning of the parameters for the disk rim.

DISKRIMAWIDTH=awidth
The rim height has the functional form

Hrim = Hrim(ζ)

[
1−

(
amax − a
awidth

)2
]1/2

where the width of the rim is awidth and the outer edge is the
same as the outer edge of the disk (amax).
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Figure D.4: Side view of the disk and disk torus, defining the meaning of the torus parame-
ters.

DISKRIMPARS= SINUSOID Hmax Hmin ZetaHmax Tmax Tmin ZetaTmax
or
POINT Zeta Hzeta Tzeta

If SINUSOID, the disk rim height is a sinusoid with functional
form

H(ζ) =
1

2
(Hmax +Hmin) +

1

2
(Hmax −Hmin) cos(ζ − ζHmax)

and its temperature is also as sinusoid with functional form

T =
1

2
(Tmax + Tmin) +

1

2
(Tmax − Tmin) cos(ζ − ζTmax)

If POINT, the disk rim height and temperature are defined by
a set of points, one point per DISKRIMPARS= line in the pa-
rameter file:

DISKRIMPARS= POINT Zeta1 H1 T1
DISKRIMPARS= POINT Zeta2 H2 T2

...
...

...
...

...

The Zetas do not need to be in any particular order. If the
temperature at any point is less than the temperature of the
underlying (spotted) main disk at that point, the temperature
is set equal to the spotted main disk temperature.

Figure D.4 shows the meaning of the parameters for the disk torus.

DISKTORUSAZERO= azero
DISKTORUSAWIDTH= awidth
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The torus height has the functional form

Htorus = Htorus(ζ)

1−
(
azero − a
(awidth/2)

)2
1/2

where the torus is centered on azero and has width awidth (note
that the meaning of awidth is different for the torus and the rim.

DISKTORUSPARS= SINUSOID Hmax Hmin ZetaHmax Tmax Tmin ZetaTmax
or
POINT Zeta Hzeta Tzeta
If SINUSOID, the disk torus height is a sinusoid with functional
form

H(ζ) =
1

2
(Hmax +Hmin) +

1

2
(Hmax −Hmin) cos(ζ − ζHmax)

and its temperature is also as sinusoid with functional form

T =
1

2
(Tmax + Tmin) +

1

2
(Tmax − Tmin) cos(ζ − ζTmax)

If POINT, the disk torus height and temperature are defined by
a set of points, one point per DISKTORUSPARS= line in the
parameter file:

DISKTORUSPARS= POINT Zeta1 H1 T1
DISKTORUSPARS= POINT Zeta2 H2 T2

...
...

...
...

...

The Zetas do not need to be in any particular order. If the
temperature at any point is less than the temperature of the
underlying (spotted) main disk at that point, the temperature
is set equal to the spotted main disk temperature.

Keywords referring to the accretion disk corona (ADC):

ADCLUM= luminosity
The luminosity of the ADC in ergs s−1, of which half is emitted
above and half below the main disk.

ADCHEIGHT= height
The distance of the ADC points above and below the orbital
plane in units of the orbital separation.
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Keywords referring to the flux from a “third light:”

3rdLIGHTPHASE= thirdlight-orbphase
The orbital phase at which the amount of flux from the third
light is specified.

3rdLIGHTFRACTION= thirdlight-fraction
The fraction of the total flux at the specified orbital phase that
is due to the third light.

Keywords referring to reading files with observed light curves:

READDATA= FILTER filtername filename
or
SQUARE minlambda maxlambda filename

Read a file with an observed light curve in either filter filtername
or the square bandpass bounded by wavelengths minlambda and
maxlambda. The wavelengths are in Ångstroms. The format of
the light curve files must be

phase1 flux1 stand-dev1
phase2 flux2 stand-dev2

...
...

...

and the standard deviations must all be present or all absent.
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D.2. A Typical parfile.dat

COMMENT= A typical parameter file for program XRbinaryV2.4.

VERBOSE= ON

DIAGNOSTICS= OFF

STAR1= ON

STAR2= ON

STAR2SPOTS= ON

DISK= ON

DISKRIM= ON

DISKTORUS= ON

INNERDISK= ON

DISKSPOTS= OFF

ADC= ON

THIRDLIGHT= OFF

IRRADIATION= ON

PHASES= -0.5 0.5 0.01

PHASEOFFSET= 0.007

BANDPASS= FILTER R

BANDPASS= SQUARE 6300.0 6700.0

NORMALIZE= FITDATA R

COMMENT= NORMALIZE= FITDATA SQUARE 6300.0 6700.0

COMMENT= NORMALIZE= MAXVALUE 1.0

PERIOD= 0.2222

COMMENT= K2= 300.0

M1= 1.34

MASSRATIO= 0.40

INCLINATION= 80.0

STAR1LUM= 1.5e36

STAR1TEMP= 3.0e5

STAR2TILES= 10000

STAR2TEMP= 4500.0

STAR2ALBEDO= 0.5

STAR2SPOT= 45.0 180.0 15.0 0.4

STAR2SPOT= 135.0 180.0 10.0 0.8

DISKTILES= 30000

DISKE= 0.1
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DISKZETAZERO= 30.0

DISKALBEDO= 1.0;

MAINDISKA= 0.001 0.30

MAINDISKH= 0.02 1.2

MAINDISKT= VISCOUS 1.0e37

COMMENT= MAINDISKT= POWERLAW -0.5 1.0e37

DISKEDGET= 5000.0 15000.0 110.0 20.0

DISKSPOT= 10.0 30.0 0.20 0.30 0.5

DISKSPOT= 120.0 150.0 0.10 0.20 1.5

INNERDISKL= 1.5e36

INNERDISKT= 3.0e5

DISKRIMAWIDTH= 0.04

DISKRIMPARS= POINT 0.0 0.06 15000.0

DISKRIMPARS= POINT 90.0 0.0 0.0

DISKRIMPARS= POINT 180.0 0.0 0.0

DISKRIMPARS= POINT 190.0 0.07 15000.0

DISKRIMPARS= POINT 270.0 0.0 0.0

COMMENT= DISKRIMPARS= SINUSOID 0.07 0.0 220.0 15000.0 5000.0 220.0

DISKTORUSAZERO= 0.10

DISKTORUSAWIDTH= 0.04

DISKTORUSPARS= POINT 0.0 0.0 0.0

DISKTORUSPARS= POINT 90.0 0.0 0.0

DISKTORUSPARS= POINT 170.0 0.0 0.0

DISKTORUSPARS= POINT 180.0 0.3 1500.0

DISKTORUSPARS= POINT 190.0 0.0 0.0

DISKTORUSPARS= POINT 270.0 0.0 0.0

COMMENT= DISKTORUSPARS= SINUSOID 0.07 0.0 220.0 15000.0 5000.0 220.0

ADCLUM= 2.0e36

ADCHEIGHT= 0.03

3rdLIGHTPHASE= 0.25

3rdLIGHTFRACTION= FILTER R 0.4

3rdLIGHTFRACTION= SQUARE 6300.0 6700.0 0.3

READDATA= SQUARE 6300.0 6700.0 Sqlightcurve.dat

READDATA= FILTER R Rlightcurve.dat

END
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