

The Dynamics of Disk-Planet and Ring-Satellite Interactions

Joseph M. Hahn Space Science Institute (SSI)

- research scientist with SSI
 - HQ in Boulder, CO
 - work from home office in NW Austin

Current Research Activities

- circumstellar debris disks
 - will address the asymmetries that are routinely seen in these disks
- Saturn's rings
 - has many interesting dynamical problems that are still unsolved

Circumstellar Debris Disks

- dusty disks extend $r \sim {\rm hundreds} ~{\rm of} ~{\rm AU}$
- almost always asymmetric, with one ansa brighter by factor ~ 1.5
- due to unseen embedded planets?
 - probably not-planetary disturbances are likely too localized
- due to passing stars?
 - possible, but statistically unlikely (Kalas et al)
- due to gas drag exerted by ISM ?
 - very possible...see Debes et al (2009) and their model for HD 32297

 β Pic image from Golimowski et al (2006)

HD 32297 image from Mawet et al (2009)

• will give my simple explanation for disk asymmetries in a later slide...

The Birth Ring

- a debris disk is thought to be generated by a birth ring (BR) of planetesimals that collide and generate dust
- radiation pressure (RP) lofts small $1-10\mu$ m grains into wide orbits out to $r\sim 10^{2\text{ to 3}}$ AU

$$a = \frac{1-\beta}{1-2\beta}a_{ring}$$
 and $e = \frac{\beta}{1-\beta}$
where $\beta = \frac{RP}{gravity} \sim \frac{0.5 \ \mu m}{grain radius}$

when orbiting a sunlike star

 meanwhile, Poynting-Robertson (PR) drag causes some grains to drift inwards of BR

model for AU Mic by Strubbe & Chiang (2006)

How Do You Make the Disk Asymmetric?

- easy...make the BR eccentric
- dust grains manufactured near BR's periapse are launched into wider & eccentric orbits, due to BR's faster orbital speed
- dust streamlines are concentrated near BR's periapse, increasing disk's surface brightness there

Dust-Dust Collisions

- previous calculations ignored collisions among dust grains
- collisions are important, steepen the disk's dust size distribution
 - smaller grains are longer lived, which increases the disk's asymmetry
- I will account for collisions by 'quantizing' the problem assume the BR is the source of numerous discreet dusty streamlines (orbits) in the disk, each characterized by β , $a(\beta)$, $e(\beta)$, $\tilde{\omega}$
 - quantization allows me to avoid slow Monte Carlo simulations, and really slow Nbody simulations
 - also replaces tedious 3D integrals over the disk volume with simple sums

- inspect every site where pairs of streamlines cross, and calculate a collision probability density α_{ij}
- this provides rate equation for the dust abundance $N_i(t)$ in each streamline *i*:

 $\frac{dN_i}{dt}$ = dust production in BR – collisional destruction

$$= p_i - N_i \sum_{j \neq i} \alpha_{ij} N_j$$

solar star, $a_r = 50$ AU, $\dot{M}_d = 10^{23}$ gm/yr

- this coupled system of equations is easily solved for streamline populations $N_i(t)$
- this system of equations is *scale invariant*, which is very handy solve then once, then rescale the results for any a_{ring} , L_{\star} , M_{\star} , etc.

- results are mostly sensitive to the BR's dust production rate \dot{M}_d
- comparing surface brightness of β Pic and AU Mic to simulations, I should be able to extract \dot{M}_d and total disk mass M_d ...almost there...
- comparing simulated & observed asymmetries will also provide the unseen BR's eccentricity
- final task: include planetary perturbations & infer planet masses from disk observations, such as Fomalhaut, for example (Kalas et al 2008, Chiang et al 2009)

Saturn's Rings: an interesting & complex disk-perturber system

- Saturn has 2 broad, dense rings
 - outer B ring is confined by m = 2 ILR (eg, 2:1 MM resonance) with Mimas
 - outer A ring is confined by m = 7ILR w/ coorbitals Janus & Epimetheus
- a naive solution to 3-body problem provides motion of particles orbiting at the ring-edge:

$$r(\theta) - a = R \cos[m(\theta - \theta_s - \tilde{\omega})]$$

which is an *m*-lobed pattern that corotates with the satellite's longitude $\theta_s(t)$

press release image from CICLOPS website

• accounting for the ring's mass & gravity suggests that the ring's epicyclic amplitude R would be sensitive to ring's σ

- this is an interesting possibility, since the surface density σ for the B ring (Saturn's biggest & most massive ring) is completely unknown
- also, Cassini is there, busily measuring R for many of Saturn's rings

from Spitale & Porco (2006)

- Cassini observations clearly show the expected m = 2 pattern with an amplitude $R_{obs} = 45$ km that is forced by Mimas
- but the B ring-edge also shows other structure (possibly m = 1 and m = 3 patterns, too) whose origin is unclear (Spitale et al 2009, Hedman et al 2009)

How to solve this problem (abridged)

• treat the ring as if composed of numerous nested streamlines (orbits) whose shapes and orientations are functions of semimajor axis *a*:

radial displacement $r(a, \theta) - a = R(a) \cos m[\theta - \theta_s - \tilde{\omega}(a)]$

• Newton's second law of motion (NII) for a single ring particle in any one streamline is

$$\ddot{\mathbf{r}} = -\nabla(\Phi_{Saturn} + \Phi_{satellite}) + \mathbf{a}_{\mathbf{g}} + \mathbf{a}_{\mathbf{p}} + \mathbf{a}_{\nu}$$

- all perturbing accelerations are functions of three unknown $R(a), \tilde{\omega}(a), \sigma(a)$, plus three input parameters σ_{∞}, c, ν
- Fourier expand the perturbing accelerations, keep only the resonant terms
 - NII is 2D, which provides two DEQs
 - equilibrium also requires the ring's viscous torque to balance the satellite's gravitational torque, which provides 3^{rd} DEQ
- result: 3 complicated NL DEQs for 3 unknown $R(a), \tilde{\omega}(a), \sigma(a)...$ see Hahn et al (2009) for the gruesome details

Results

- outcome depends on whether the ring's outer edge lies just interior or exterior to Mimas' m = 2 resonance
- analysis of Voyager observations by Porco et al (1984) puts the ring-edge at 24 ± 10 km beyond the resonance
 - this suggests B ring has $\sigma \sim 280 \text{ gm/cm}^2$ (about $6 \times \text{A ring}$)
 - Joe Spitale will eventually provide me with a more accurate measurement of the ringedge's a, which will then allow me to refine my measurement of σ there
- the model also predicts the ring's σ -variations with longitude θ , which are due to Mimas' radial perturbations there

but the model has one curious problem...

- This model seems very promising, but... balancing the ring's viscous torque against the satellite's grav' torque is difficult, and is only possible when the ring's bulk viscosity ν_b is \gg shear viscosity ν_s
 - which is weird
- note that the model assumes the ring is compressible, and it employs standard hydrodynamic viscosity (L&L's *Fluid Mechanics*):

$$a_{\nu}^{r} = \frac{1}{\sigma} \frac{\partial}{\partial r} \left[\left(\frac{4}{3} \nu_{s} + \nu_{b} \right) \sigma \frac{\partial v_{r}}{\partial r} \right]$$
$$a_{\nu}^{\theta} = \frac{1}{\sigma} \frac{\partial}{\partial r} \left[\nu_{s} \sigma \frac{\partial v_{\theta}}{\partial r} \right]$$

- these assumptions work great for studies of damped spiral density waves that are seen all across Saturn's A ring
- however a recent Cassini image now has me questioning my assumptions...

Springtime for Saturn

- vernal equinox at Saturn was August 11
 - Sun's illumination is nearly coplanar with the rings
 - any small vertical structure in the ring will cast long shadows
- my speculative read of this B ring image:
 - Mimas' radial perturbation shoves ring matter inwards
 - but the ring is crowded, so particles are displaced vertically, which forms ragged mountains of particles along ring-edge
 - ring particles also tumble downhill (avalanches), creating bright dust trails that shear due to orbital motion

July 26 closeup of outer B ring, from Cassini raw image archive

- this vertical tumbling due to Mimas' push-pull of the ring is probably very lossy...
 - so I need to revise model, account for ring's *z*-motions, perhaps w/ incompressible EOS
 - hopefully this additional dissipation due to ring's z-motions will help solve the torque-balance problem

Joe Hahn, planetary dynamicist

- am always interested in meeting new potential collaborators who want to work on topics of mutual interest
- currently working on debris disks and planetary rings
 - I would be thrilled to work with anyone who wants to perform hydrodynamic simulations of rings. Nobody is doing this, so this subfield is wide open!
- I am also interested in the dynamics of the early outer Solar System
 - planet migration driven by planetesimal scattering,
 the resonant structure of the Kuiper Belt, the formation of Oort Cloud, etc
 - career goal: to find a more plausible alternative to the Nice model
- I can think of lots of cool projects that are worthy of a PhD thesis
 - promising grad students interested in planetary dynamics should look me up!
 - would also be interested in raising \$ to support a postdoc to work on topics of mutual interest