Circumstellar Disk Mineralogy in
Nearby Molecular Clouds: Spitzer
and the Herschel Followup

Joel Green
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The Harsh Life of a Dust Grain

» Planetary nebulae (circumstellar dust shells) exhibit crystalline

dust grains
» Dust is damaged by radiation after entering the ISM and
becomes pristine

= No evidence for silica (SiO,) in the ISM

* Yet we observe crystallized dust in most circumstellar disks
(except for disks with radial holes) and comets (Hale-Bopp,
Tempe 1, 81P/Wild 2; see STARDUST), which formed early and
far out in our solar system

= Crystallization requires heating to 1000 - 1400 K and cooling

* \When and where did the crystalline dust get formed?
*|n-situ vs. radial mixing




A “Typlcal” T Tauri Disk
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near-IR (1-4 um) <0 05 0.1 AU
mid-IR (4-30 um): 0.1-10 AU
far-IR (30-100 um): 10-100 AU




Radial Distribution of Crystals

= Many of the youngest disks, including ones that are barely
beyond their embedded state, show signs of dust grain
processing

= Sargent, McClure, Oloffson, Watson et al. (2009), find that
disks with large amounts of any one crystalline species are likely
to have some amount of other crystalline species

* Presence of Mg-rich crystalline silicate emission (forsterite;
Mg,SiO,) at 33 um implies that crystals should be present in the
iInner regions of the disk as well and contribute to the emission in
the 10 um silicate feature (forsterite, enstatite, and silica).

= Crystallinity in the innermost 1-10 AU of the disk correlates with
Increased dust processing in the inner 1 AU of the disk
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DIGIT (Dust, Ice, and Gas In
Time)

= A Herschel Open Time Key Project

= 250 hrs (first observations appear at the end of
Octoberl!)

» 30 embedded protostars, plus 64 disk sources
ranging from B to M in spectral type (intermediate
and low mass), selected from nearby (a few x 100
pc) molecular clouds (Tau, Oph, Cha, Per, Ser, Lup)
» Full disks/ disks with gaps; crystalline dust vs.
amorphous at Spitzer wavelengths; embedded
objects will exhibit outflows, ice (water, carbon
dioxide, and others); gas emission

"PACS spectroscopy (57-210 um), PACS
photometry (70, 100, 160 um)

»SPIRE photometry (to determine disk masses)

» HIFI spectroscopy for embedded sources not in
the WISH guaranteed time project (to detect water)




Expected Features
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PACS prediction (generic disk source)
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Outer disk: less optically thick, and
we can detect larger grains (~ 20 um)




If we detect crystalline dust
with PACS...

» Very efficient radial mixing is suggested (depending upon the
total mass of grains in the outer disk vs. inner)...

* Or the dust was distributed in its current arrangement at very
early times, during the embedded phase

» Or the dust has been lifted into the upper layers in great

quantities

If we do NOT detect any dust features:
* Dust has grown beyond 20 um in size
» Crystalline dust has settled deeper into the disk
= Cold crystalline dust is not present
=Indicates very poor radial mixing
= An early event set the crystalline mass fraction in the
iInner disk




The Big Picture from Deep Impact?

Silicates and Silicales, iron compounds,
iron compounds ' ~ ices and frozen gases,
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A “Typlcal” T Tauri Disk
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Dust structure

e at rpercust grans

I

cakicer midpane

OIS racersation
NS

Furlan et al.




Grain Growth in Disks
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A Key Project with Herschel

A 3.5-m Telescope

Passively cooled

Launched May 14, 2009
Ariane 5 from French Guiana
At L2 point

Focus on far-infrared and
submillimeter

PACS: 57- 210 microns
photometry and spectroscopy
R~ 1500

Two other instruments




Circumstellar Disks

* The disks form as part of the collapse of a
dense molecular core to form a star

* Angular momentum implies most matter
falls onto disk, not star

" Disk feeds star, provides raw materials
for planet building

= Star-disk system sheds angular
momentum in bipolar jets




The Artist’s Conception
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Scenario for star- and planet formation

Formation planets
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Studies of disks

= Survey of star forming regions, known disks
with Spitzer Space Telescope
= c2d (Evans et al.) and IRS team (Joel Green)
= Constrain timescales
= Study structure and composition

= Studies of gas phase species in disks
= IR spectroscopy from ground (Lacy, Jatfe, Salyk)

* Far-infrared spectroscopy of disks with
Herschel Space Telescope
" Dust, Ice, Gas In Time (DIGIT) Key project




Disk Timescales

wT'TSs IN CLOUD MAPS .
- Some wTTs do have disks

MR Not scen before
' But only the young ones
(age <3 to 6 Myr)
Ages are uncertain due to
models
I Half the young ones lack
? disks (even at 0.8 to 1.5
i Myr)
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Diversity in disk SEDs
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Traditional III I11, then flat I1I, then rising

Some excesses start only at long wavelengths but are substantial:
We call these cold disks. The dust 1s mostly colder, which means
that 1t 1s farther from the heating source (the star).




A Case Study LkHo330

LkHa 330

0-Si—-0 bend
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Some excess at short A, but much
more beyond 20 um. Blue line has
no gap, red has gap.

Implies large gap; models predict
about 40 AU radius. Submm
interferometer should show ring.
J. Brown et al. 2007
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