Three Species of Giant Planets

Sally Dodson-Robinson

Spherical, Self-Gravitating Objects

Picture			
Mass Scale	Jupiter	10 Jupiters	100 Jupiters
Formation Efficiency	$\sim 10 \%$	Unknown (being measured)	$10-30 \%$ in local clouds
Formation Mechanism	Bottom-up	Intermediate (possibly triggered)	Top-down MultiplicityN planets orbit 1 star
Unknown	Singles or binaries with $\mathrm{M}_{1} / \mathrm{M}_{2} \sim 1$		

Bottom-Up Planet Growth

1. Rock and/or ice planetesimals collide, stick together by gravity Terrestrial planets stop here
2. Gas begins to gather slowly on large (>10 M_{\oplus}) solid core Ice giants (Uranus and Neptune) stop here
3. Gas falls onto protoplanet at runaway pace; massive gas atmosphere grows in ~ 1000 years Gas giants (Jupiter and Saturn) stop here

Top-Down Star Formation

Cartoon by Michiel Hogerheijde

Intermediate Mechanism

Dodson-Robinson et al. 2009, arXiv:0909.2662

Three Species of Giant Planets

Growth Curves

Questions

- How common are planets formed by gravitational instability?
- Over what mass ranges do bottom-up, topdown and instability formation overlap?
- Can gravitational instability and core accretion occur in the same disk?
- How can we ensure protoplanetary clumps formed by GI survive and evolve into planets?
- At what distance from the star does core accretion no longer form giant planets?

