Three Species of Giant Planets

Sally Dodson-Robinson

Spherical, Self-Gravitating Objects			
Picture			
Mass Scale	Jupiter	10 Jupiters	100 Jupiters
Formation Efficiency	~10%	Unknown (being measured)	10-30% in local clouds
Formation Mechanism	Bottom-up	Intermediate (possibly triggered)	Top-down
Multiplicity	N planets orbit 1 star	Unknown	Singles or binaries with M ₁ /M ₂ ~1

Bottom-Up Planet Growth

- Rock and/or ice planetesimals collide, stick together by gravity Terrestrial planets stop here
- Gas begins to gather slowly on large (>10 M_⊕) solid core lce giants (Uranus and Neptune) stop here
- Gas falls onto protoplanet at runaway pace; massive gas atmosphere grows in ~1000 years Gas giants (Jupiter and Saturn) stop here

Top-Down Star Formation

Cartoon by Michiel Hogerheijde

Intermediate Mechanism

Dodson-Robinson et al. 2009, arXiv:0909.2662

Three Species of Giant Planets

Growth Curves

5.2 AU Low solid/gas Quick formation Most massive 10 AU Medium solid/gas Slower formation Saturn-like Intermediate mass 15 AU High solid/gas Slow formation Ice giant Low mass

Questions

- How common are planets formed by gravitational instability?
- Over what mass ranges do bottom-up, topdown and instability formation overlap?
- Can gravitational instability and core accretion occur in the same disk?
- How can we ensure protoplanetary clumps formed by GI survive and evolve into planets?
- At what distance from the star does core accretion no longer form giant planets?