Energy Resources in the Solar System

UT Planetary Science Symposium
October 2, 2009

William A. Ambrose

100 Years of Scientific Impact
1909 - 2009

Bureau of Economic Geology
John A. and Katherine G. Jackson
School of Geosciences
Strategic Goals

Support human settlement

Manufacture of propellants for transportation

Energy and materials sources for Earth imports
<table>
<thead>
<tr>
<th>Resource</th>
<th>Use</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium-3</td>
<td>Energy</td>
<td>Mature regolith</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Propellant, water</td>
<td>Mature regolith, poles</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Propellant, air/water</td>
<td>Global</td>
</tr>
<tr>
<td>Nitrogen, carbon</td>
<td>Food and plastics</td>
<td>Breccias/regolith</td>
</tr>
<tr>
<td>Metals/bulk regolith</td>
<td>Construction</td>
<td>Breccias/regolith</td>
</tr>
<tr>
<td>Iron</td>
<td>Moon base</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>Shielding</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Roads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar power facility</td>
<td></td>
</tr>
</tbody>
</table>

Duke et al. (2006)
Moon base: materials from regolith

Shuttle launch with lunar propellants

He-3 mining

LUNAR REGOLITH

Undisturbed Grade For Apollo 11 Helium-3 >20 ppb

1000 MWe Fusion Power Plant (D-³He) Requires ~100kg Helium-3/year

100 Kg Helium-3 Requires Mining 2km² to Depth of 3m and Processing the <100 µm Fraction (~50 Wt.%)

100 Kg Helium-3 Has Steam Coal Equivalent Value of $140 Million (Coal @$2.50/million Btu)

Schmitt (2006)
Lunar He-3 Distribution

Oceanus Procellarum

Tranquillitatis

Johnson et al. (1999)
Lunar Hydrogen North Pole

Both poles: ~6.6 billion tons of ice

Shadowed area within 12° latitude of north pole: 7,500 km²

Epithermal neutron flux

Feldman et al. (1998)

Bussey et al. (2003)
Polar Water Signature

NASA Moon Mineralogy Mapper
Chandrayaan-1
September 2009
Solar Illumination
North Pole

% Illumination

100
90-99
75-90
60-75
45-60
0

Bussey et al. (2003)
Mars Propellants

Water
- Atmosphere
- Ice caps
- Permafrost

CO₂, CH₄ clathrates
- Ice caps
- Permafrost

North Pole - MOLA

Max. thickness 3 km
Volume ~1.2 million km³
Mars: Water Ice Distribution

- Polar caps: 0.925×10^6 km2
- Polar layered terrain: 1.8×10^6 km2
- Tropical mt. glaciers: 0.3×10^6 km2
- Subsurface ice: 21×10^6 km2

Kieffer et al. (1992)
Tanaka (2005)
Hartmann et al. (2009)
MOC M01-00294
Methane on Mars
Atmosphere: 10 ppb

Exhumed permafrost

Weathered olivine

Olivine composition (% FeO)

Plains near Lyot Crater
Mars Global Surveyor

Nili Fossae

200 m

20-32

>45
Asteroids
NEA’s

- Non-Earth approaching
- Amors

- NEA’s
 >5,850 known
 500-1,000 >1-km

September 30, 2009

Armagh University
3554 Amun—NEA
Small M asteroid—300× metal in lunar regolith

~2 km diameter (size of a typical open-pit mine)

Mass: 30 billion tons

Market value
Fe and Ni: $8,000 billion
Co: $6,000 billion
Pt-group: $6,000 billion

Equivalent asset $10 million per ton to launch from Earth, or $300,000,000 billion

Codrin Bucur
Economic Factors

(+) Large market for mass-in-orbit materials (metals, construction, volatiles)
Potential for in situ propellant production

(-) Small number of NEA’s have been spectrally classified
Target accessibility depends on orbital variability
Mining techniques require feasibility testing

http://www.celestia.info/
Summary

He-3, ice, regolith

Ice, CH$_4$, N, CO$_2$

Metals, volatiles
Energy Resources for Human Settlement in the Solar System And Earth’s Future in Space