Properties and Origin of Bulges in High Mass Spirals (Weinzirl et al. 2008, ApJ submitted, arXiv:0807.0040)

Motivation

- Bulges provide important clues about galaxy formation, but the absence of bulges is likewise interesting!
- Bulges are often absent locally:
 - 15% of edge-on SDSS galaxies are bulgeless (Kautsch et al. 2006)
 - 20% of i<60° low-mass disks appear bulgeless (Barazza, Jogee, & Marinova, 2008)
 - 11/19 galaxies with D<8 Mpc and V_c >150 km/s have pseudobulges (Kormendy & Fisher 2008)

Kautsch et al. 2006

Barazza, Jogee, Marinova (2008)

Weinzirl et al. 2008 (ApJ submitted, arXiv:0807.0040) has two goals:

- Quantify B/T and bulge index for nearby high mass galaxies
- Make a detailed quantitative comparison with ACDM-based models

Sample and Method

Sample

- Drawn from OSU Bright Spiral Galaxy Survey:
 - Bright local field galaxies with $m_{_{B}} \le 12$
 - Reference sample for bars in the local Universe (Eskridge 2000; Marinova & Jogee 2007)
- Use H-band light to trace stellar mass

Main sample is 146 $\,$ i<70° galaxies, complete for $\,$ $M_{\star} \geq \,$ 10^{10} $\,$ M_{_{\odot}} and $\,$ $M_{_B} \leq \,$ -19.3 $\,$

Sample peaks at intermediate Hubble types Sbc-Sc

Luminosity Decomposition

• Galaxy light is emitted from physically and dynamically distinct components:

 $I(r, \theta) = I_{Bulge}(r, \theta) + I_{Disk}(r, \theta) + I_{Bar}(r, \theta) + I_{Spiral}(r, \theta) + \dots$

- Most previous 2D decompositions have used only bulge-disk models (e.g., Allen et al. 2006)
- Inclusion of the bar in 2D bulge-disk-bar decomposition is important:
 - B/T and bulge index are overstated in 2D bulge-disk decomposition of barred galaxies (Laurikainen et al. 2005)
 - 60% of galaxies are barred in H-band (Marinova & Jogee 2007)
 - Optical bar fraction is higher in galaxies without prominent bulges (Odewahn 1996; Barazza, Jogee, Marinova 2008; Marinova et al. 2008; Aguerri et al. 2008)

We perform 2D bulge-disk and bulge-disk-bar decomposition with GALFIT (Peng et al. 2002)

Decomposition With GALFIT

For 78% of galaxies, nuclear point sources were added to the best model (to account for AGN, HII nuclei, nuclear star clusters)

Sample Decomposition For NGC 4643

Sample and Method Results

Distribution of B/T and Bulge Index

Weinzirl et al. 2008

Mean B/T, bulge index are consistent with other work (e.g., Laurikainen et al. 2007; Graham & Worley 2008).

66% of bulges have B/T \leq 0.2; 74% have n \leq 2

Such bulges exist in barred and unbarred galaxies across a wide range in Hubble type!

Bar Fraction vs B/T and Bulge Index

- H-band bar fraction is 58% (84/146), in agreement with other studies on the same data (Marinova & Jogee 2007; Laurikainen et al. 2004; Eskridge et. al 2000)
- Does H-band bar fraction change with B/T and bulge index?

Bar fraction with bulge B/T \leq 0.267.6% \pm 5.44%Bar fraction with bulge B/T>0.235.9% \pm 7.68%

Bar fraction with bulge n<2</th> $64.3\% \pm 4.53\%$ Bar fraction with bulge n>2 $35.3\% \pm 8.20\%$

H-band bar fraction is greater by a factor of two for low B/T and low bulge index galaxies!

- Is there a relationship between bulges and bars?
 - Secular evolution may build low-B/T, disky bulges
 - Or, low-B/T galaxies with no ILR are more susceptible bars induced by swing amplification with a feedback loop (Julian & Toomre 1966; Toomre 1981; Binney & Tremaine 1987)

Comparing with Hierarchical Models

- Make a quantitative comparison with the predicted B/T distribution from ACDM-based models (Khochfar & Burkert 2005; Khochfar & Silk 2006)
- DM halo merger trees from the extended Press-Schechter formalism (Somerville & Kolatt 1999)
- Baryonic physics from semi-analytic prescriptions for SF, cooling, supernovae feedback

Major merger ($M_1/M_2 \ge 1/4$) dynamics:

- Major mergers set B/T to 1; B/T declines after major mergers due to disk buildup by cold accretion
- A galaxy with a past major merger can have B/T≤0.2 at z=0 only if z_{last}≥2

Courtesy of Khochfar & Burkert

Minor Mergers and Secular Evolution

Bulge formation mechanisms include major mergers ($M_1/M_2 \ge 1/4$), minor mergers ($1/10 < M_1/M_2 < 1/4$), and secular evolution

Contribution of minor mergers:

- Satellite deposits stars in central region of the primary
- Gas inflow from tidally induced bars and tidal torques

Contribution of secular evolution:

- Bar-driven inflow between mergers
- Boxy/peanut bulges from bar bending/buckling

Included in model Neglected in model

Minor mergers add all stellar mass in satellite to bulge of primary Secular processes are neglected

Distribution of B/T: Data vs Model

	Data	Model (Major + minor)	Model (Minor only)	Model (All mergers)
B/T ≤ 0.2	65.5%	3.09%	64.1%	67.2%
B/T > 0.2	34.5%	18.6%	14.3%	32.9%

The fraction of model galaxies with a past major merger and $B/T \le 0.2$ is 3%, more than 20 times smaller than the observed fraction (66%).

 $B/T \le 0.2$ bulges cannot have been built by major mergers!

Weinzirl et al. 2008

Summary & Future Work

- Sample: 146 i < 70° galaxies; complete for $M_{\star} \ge 10^{10} M_{\odot}$ and $M_{B} \le -19.3$
- Modeling: Hierarchical Λ CDM-based models from Khochfar, Burkert, & Silk
- Results (M_{*}≥10¹⁰ M_∞):
 - Low B/T \leq 0.2 bulges are found in 66% of spirals; n \leq 2 bulges are found in 74%
 - Fraction of model galaxies with past major mergers and $B/T \le 0.2$ is more than 20 times smaller than the observed fraction
- Future theoretical work for modelers:
 - More realistic treatment of minor mergers and secular processes. Suggestions welcome!
- Future observational work:
 - Measure ages of bulges relative to bars and disks with IFU spectroscopy
 - Ongoing decomposition of the dense Coma cluster (ACS Coma Cluster Treasury Survey; Carter et al. 2008)
 - Study properties of massive disks at 1.5<z<3 from the GOODS NICMOS survey (Conselice et al. 2008)

Stellar Masses

• Photometric masses calculated based on Bell et al. (2003)

$$M_* = v_{lum} 10^{-0.628 + 1.305(B-V) - 0.10}$$
$$v_{lum} = 10^{-0.4(V-4.82)}$$

- We calculate stellar masses for 127 (87%) of objects
- Several studies note good agreement between photometric and dynamical masses (Bell et al. 2003; Drory et al. 2004; Salucci, Yegorova, & Drory 2008). Typical errors are within factors of 2-3

M/L Ratio

• We assume a constant M/L ratio between bulges, disks, and bars:

$$\left(\frac{B}{T}\right)_{\text{Mass}} = \frac{L_{\text{Bulge}} \times \left(\frac{M}{L}\right)_{\text{Bulge}}}{L_{\text{Bulge}} \times \left(\frac{M}{L}\right)_{\text{Bulge}} + L_{\text{Disk}} \times \left(\frac{M}{L}\right)_{\text{Disk}} + L_{\text{Bar}} \times \left(\frac{M}{L}\right)_{\text{Bar}}} = \frac{M_{\text{Bulge}}}{M_{\text{Bulge}} + M_{\text{Disk}} + M_{\text{Bar}}}$$

- H-band is insensitive to age and dust gradients
- What if this assumption is wrong?
 - If the bulge is older, then $\left(\frac{M}{L}\right)_{\text{Bulge}}$ is larger and bulge mass is underestimated

- If the disk is younger, then $\left(\frac{M}{L}\right)_{\text{Bulge}}$ is less and bulge mass is overestimated

Weinzirl et al. (2008)

Schneider 2006

Swing Amplifier With Feedback Loop

- Swing amplification: Leading spiral arms unwind and swing into trailing arms while gaining a boost in amplitude.
- Feedback loop: In the absence of ILR, the trailing arm is able to pass through the galaxy center and transform into a leading arm

Interference between leading and trailing arms near galactic center makes a bar

Comparison With Independent Results

Comparison with 1D bulge-disk decomposition

Graham (2001)

Weinzirl et al. (2008)

Comparison With Independent Results

Comparison with 2D bulge-disk and bulge-disk-bar decomposition

Sensitivity to Maximum B/T?

Maximum B/T = 0.55

Our conclusions about major mergers do not change when the maximum B/T limit is adjusted

Kinds of Bulges

- Classical bulges:
 - Form in major mergers
 - Miniature elliptical galaxies "that happen happen to have a prominent disk around them" (Renzini, 1999)
 - Dynamically hot, low V/ σ
- Pseudobulges:
 - Form from secular processes
 - Disky structures masquerading as bulges
 - Rotationally supported, high V/ σ

- Boxy/peanut bulges:
 - Buckling stabilities thickens bars, making them peanut shaped

