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Overview

|. Deep multi-wavelength surveys: A census of SF in field galaxies to z>2
- Main Sequence of star-forming galaxies to z=1 (>2)

— gradual decline of star formation in galaxies dominant since z~1 (>2);
- limited role of starbursts

- new prospects to quantify and understand processes that regulate SF
ll. Using the SFR-M* relation to quantify star formation histories
as a function of galaxy mass
lll. Delayed SF in less massive galaxies

- unknown baryon physics?

IV. Measuring SFR: Uncertainties and hope from adding new methods

V. Summary



. Allwavelength sroth strip International Survey

The All-Wavelength
Extended Groth Strip
International
Survey

« DEEP2:Keck /DEIMOS
spectra: ~10,000

HTTP://AEGIS.UCOLICK.ORG iy zeinic

e« HST V,I (700 sq
arcmin-2xGOQODS)

e Very deep:
- Spitzer (IRAC, MIPS)
- GALEX (NUV, FUV)
— Chandra ACIS
- VLA 6/20cm

- Herschel FIR

- submm

e Ground-based deep
U- to K-imaging

C. Willme - , R
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The Star Formation Rate-Stellar Mass Relation(Main Sequence”)
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A more detailed view of star formation properties

0.70<=2<0.85

24um sources, or blue emission
line galaxies

(~2/3 of sample)

early-type HST morphologies, red
sequence:

(~1/3 of sample)

3) Galaxies with no detection in
24um, but weak emission lines:

red sequence, 2/3 early-type HST
morphologies,

large fraction LINERs/AGN
(<20% of sample)




The Star Formation Rate-Stellar Mass Relation(“Main Sequence”)
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The Star Formation Rate-Stellar Mass Relation(“Main Sequence”)
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The Star Formation Rate-Stellar Mass Relation(Main Sequence”)

0.20<=2<0.45 0.45<=2<0.70 0.70<=2<0.85 0.85<=2<1.10 .
: star-forming : - : :
galaxies

Noeske ei al. 2007b
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1)

(Generic mode of star formation in galaxies, prior to quenching of SF?)

2) Range of log(SFR) ~+0.3 dex (1o) at all z:

(constraint on merger-driven starbursts, feedback)



The Star Formation Rate-Stellar Mass Relation(“Main Sequence’)
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(Generic mode of star formation in galaxies, prior to quenching of SF?)

2) Range of log(SFR) ~+0.3 dex (1o) at all z:

(constraint on merger-driven starbursts, feedback; cf effect of mergers, this conf.)

3) Normalization evolves strongly with z:

LIRGs at z~1 are normal massive galaxies, NOT brief stochastic starbursts (ALL
have equally high SFR at the SAME TIME!

Early, gas-rich phase of smoothly declining SF history of >~L* galaxies



The Star-Forming sequence encodes
mass—-dependent SF histories:

HRD of galaxies



Main Sequence encodes
mass—-dependence of SF
history timescales :

T and z. mass-dependent
(power laws)
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el | 0w mass galaxies form stars
slower and start later
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Resulting evolutionary tracks: significant mass growth,
requires mass corrections to measure evolution of galaxy
properties
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A promising perspective to further our undérstanding of
star formation:

SF histories to z~2: regular, mass-dependent, rather
uneventful (pre-quenching)
-> same physical processes dominant?

The MS as the HRD of galaxies:
encodes mass-dependence of SF history timescales

to quantify influence of , mergers/environment,
morphology, etc. on SF, and measure



A delayed onset of star formation in
low mass galaxies
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“Doubling Time Problem™:

Given their SFR, low mass galaxies would produce their stellar
mass in tqg < ty :high SFR are not sustainable for ~tu.

Simultaneous starbursts?
Not plausible, and inconsistent with gradual decline of SFR.

Only alternative:
in many less massive galaxies



high mass galaxies

low mass galaxies

From SF sequence:
Less massive galaxies

Onset of SF (z) more broadly distributed from high to low z

(“Staged galaxy formation” Noeske et al. 2007b)

- Supported by various independent evidence -



Independent evidence: combining cosmological¥simulations with
stellar mass functions at z=0 and 1

isolate mass growth due to merging and star formation
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Today’s low-mass galaxies (<1019 Msun)

formed more than 70-80% of their stellar mass since z~1
-> jnefficient star formation at z>1



Stellar populations of high z galaxies:
more recent onset of SF in less massive galaxies

1.5<z<2.6
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Evolution of the stellar mass function
Cirasuolo et al. 2008, UKIDSS UDS
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Do most current models form sub-L* galaxies too early?
Better agreement for hydrodynamical simulations (at low z) ?




Possible Origin of mass-dependent delays?

1) Cosmological (DM assembly history) ?

Observed Downsizing of SF with time requires bal
processes that decouple the histories of star formation from
those of halo assembly (Neistein et al. 2006)

(Example: threshold halo mass for SF; needs to increase with z, and be >> Mmnin
for HI cooling)

2) Current understanding of physics?

Current simulations do not reproduce the observed evolution of
SFR: Model SFR are too low at z~1 and z~2

(Elbaz et al. 2007, Daddi et al. 2007, Dave 2007)

A delay in SF would help, but is hard to reconcile with physical
understanding of gas accretion and star formation.



Tentative Conclusion:

our understanding of high z SFR is fundamentally flawed,

(e.g. evolving IMF, Dave/van Dokkum 2007, but results from stellar mass functions are
less affected by IMF evolution),

Or we do not understand/correctly treat processes
(if LCDM correct, likely baryonic)

that delay or partially suppress SF
in a mass-dependent way

— Current treatments of SN feedback: generally not sufficient

- Suppression of gas cooling by the UV background? only efficient for
very low mass halos (but see astro-ph, Susa 2008).

- Additional processes7 E.g. H> formation/destruction (Robertson+ 2007
Gnedin+ 2008)?

Whatever process, it will lead to -> higher
disk survivability, lower B/T in mergers;



Star Formation in Models vs Data:
A mismatch in redshift evolution?
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MODELS (SAMs and hydro-sims)
reproduce SFR-M* relation,

but predict less z evolution of SFR at a
given stellar mass than observations



Measuring SFR diagnostics is not trivial.
Various systematics remain poorly understood.

The SFR-M-relation vs z is fundamental to
understand-SF and baryon physics of galaxies -

improved accuracy of SFR measurements will be
important near-future work.



SFR tracers available for large numbers of galaxies to z~2:

1) Thermal IR .

Advantage: In principle, self-correcting for extinction (Lsoi of young *s)

Problems: AGN - SF separation (Daddi et al. 2007; Rieke et al. 2008)
Are local IR SED templates correct at z>~17?

Hope: longer A\ (FIDEL,Herschel,LMT/ALMA); improved diagnostics

2)

Advantage: widely-available from broad-band imaging to high z
Problems: extinction correction (UV slope, ...) uncertain (Seibert+ 05)
Hope: SED fits (Salim et al.), calib from other tracers

3) (Balmer, Oll, OIllI)
Advantage: Robust extinction correction from Balmer decrement
Problems: Balmer lines need NIR spectroscopy at z~1

Oll, Olll depend on T,0/H, calibration problematic
Hope: NIR, massively Multi-Object spectrographs



Common Systematic Uncertainties of SFR measures:

1) IMF:
Evolution with z?

van Dokkum 2008, Dave
2008, Wilkins et al.
2008 (arXiv:0809.2518)

Evolution with Galaxy

properties? Meurer et al.
2008
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2) Different SFR diagnostics
probe different timescales:

roblem for young bursts, not
or ~continuous SFH
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~16 |

< _14 L d 3) Stellar input physics correct
| [ ] C o (Leiterer 2008, astro-ph)?
e 1 il Massive stars with rotation:
e § @ T SFR(Ha) overest. by 25(50)%
log(Age [Myr]) log(Age [Myr]) for Zsolar(Zsolar/5)

Leitherer et al. 2008




Independent Measures of SFR (M, z)
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Mass-dependent evolution
of stellar mass functions

+probes less massive stars
(evolved * pop)

-requires merger mass
assembly from LCDM

SSFR (~1Gyr averaged)
from PCA of spectral
stacks, young stars from
Balmer absorption

largely dust-independent

Radio continuum

Dunne et al. 2008, arXiv:
0808.3193




Encouraging:

Even out to z~2, SFR measures agree
within <~x2

(on average!)



Summary (1):
(NOTE: star-forming field galaxies)

1) Star formation in multi-wavelength surveys:
, limited range of SFR at a given M,z.

2) , merger effects on SFR.

3) starbursts, dominant since z<2+;
- most stellar mass formed in continuous mode of SF
- starbursts (merger-driven, others) play modest, non-evolving role
- LIRGs at z>>0 are not brief, stochastic starbursts, but the early,
gas-rich phase of the smoothly declining SF history of >~L* galaxies

4) New scenario: less massive galaxies have longer SF timescales, and a

— 2 effects contributing to “downsizing”: ©(M), z{M)

5) model of SFR vs M, z over 2/3 t,



Summary (2):
6) SFR include many , like models

7) Different SFR measures differ by

At z>~2 , expect worse for extreme objects (high SFR,
obscured AGN, ...).

8) Additional systematic uncertainties:
IMF, physics of massive stars -> together another factor

9) Hope from comparing SFR tracers:
- Add multi-lambda, FIR, mm, radio
- probe stars of different masses
- less dust-affected techniques

Systematic SFR offsets between models and data at a factor of ~2 do not
imply incorrect model physics



