Stellar Feedback: Multiphase ISM and Galactic Outflows.

Daniel Ceverino (HU)

Anatoly Klypin (NMSU), Chris Churchill (NMSU), Glenn Kacprzak (Swinburne) Avishai Dekel (HU) Austin, 2008

Stellar Feedback

- Energy sources:
 - Supernova explosions.
 - Stellar winds.
 - Photoionization heating.

 $\frac{\partial e}{\partial t} = \Gamma - L$ Feedback heating vs radiative cooling

Heating rate:
$$\Gamma = \rho_{\text{Stars}} \Gamma$$

Cooling rate:
$$L = n_{H}^{2}L'$$

Ceverino & Klypin 2007

In the beginning...

Rosette Nebula

there was an Overheated, Overpressure, bubble expanding in a molecular cloud

Overpressure Cavity

Expands !!

Our implementation

entation Ceverino & Klypin 2007

Kravtsov ART hydro code: Physical processes included:

AMR shock capturing hydro

metallicity-dependent cooling + UV heating (Haardt & Madau). CLOUDY. Compton cooling

Temperature range for cooling: 10²K -10⁸K

Jeans length resolved with 4 cells

Star formation rate proportional to gas density

Energy release from stellar winds+ SNII +SNIa

Thermal feedback: most * form at T< 1000K n>10cm⁻³

• Runaway stars: massive stars move with exp(-v/17km/s)

A piece of a galactic disk

Super-bubbles and galactic chimneys

4x4 Kpc² Slices perpendicular to the disk plane

8 pc resolution

The effect of the stellar feedback in the ISM (Ceverino & Klypin 2007):

A multiphase medium: Cold (T<10³ K) gas, Warm ($10^3 < T < 10^4$ K) and Hot (T> 10^4 K) gas.

Super-bubbles and galactic chimneys

4x4 Kpc² Slices perpendicular to the disk plane

8 pc resolution

The effect of the stellar feedback in the ISM (Ceverino & Klypin 2007):

A multiphase medium: Cold (T<10³ K) gas, Warm ($10^3 < T < 10^4$ K) and Hot (T> 10^4 K) gas.

z=3.5 Major progenitor of MW. 45 pc resolution Ceverino & Klypin 2007 Face-on view 100 kpc proper 0.00 100. 625 312.5 X velocity 0 -312.5 -625

Gas velocity In the horizontal direction.

Outflows extend beyond the virial radius Outflow mass ≈ 107 M_☉ Mass loss rate ≈ SFR

Maximum Outflow Velocity vs Stellar Mass

Maximum Outflow Velocity vs Star Formation Rate

Mean properties from DEEP2 Weiner et al (2008). (1.3<z1.5)

> Massive galaxies with SFR=10-100 M_{\odot} /yr can produce significant outflows of 500-1000 km/s

Outflow mass vs Stellar mass

For Dwarf galaxies,
a significant fraction
of the baryons are
lost.

For massive galaxies, the mass in the outflow is a small fraction of the stellar mass.

Outflow Kinetic Energy vs Stellar Mass

The kinetic energy of the outflow scales linearly with stellar mass.

The effect of outflows extends much further

Conclusions

- Stellar feedback maintains a 3-phase ISM.
- It generates super-bubbles and galactic chimneys.
- Cosmological simulations with 30 pc resolution and more accurate models of stellar feedback produce naturally galactic outflows with properties similar to observed outflows at redshift 1-1.5.

THE END (FIN)