# MOSAIC Reductions for z~2.1 Lyman **Alpha Emitting Galaxies** Patrick Williams '12 Texas A&M University Adviser: Dr. Steven Finkelstein Thanks: Dr. Darren DePoy Dr. Jennifer Marshall **TAMU** Instrumentation Lab

## Project Overview

Three data sets from KPNO and CTIO
Narrow-band imaging selection of LAEs at z~2.1

- Evolution of the luminosity function
- Investigate age, stellar mass, dust and dark matter halo mass evolution.



## Lyman Alpha Emitters (LAEs)

Distant galaxies that emit Lyman-alpha radiation

Progenitors of local Universe galaxies
Most LAEs found in 3.1 < z < 6 (No LF evolution)

 z~.3 showed fainter and rarer LAEs



M95. Credit: NASA

## Selection of z~2.1

LAEs cannot be observed from the ground at z < 2

 Atmospheric absorption blueward of 3500 Å

z~2.1 is "last stop"

Used 3727 Å narrowband filter for Lyman alpha emission at z~2.1

If no evolution of LF from z= 3.1 - 2.1

~300 LAEs per pointing

If LF resembles z~0.3

~10 LAEs per pointing



S. Finkelstein (2008)

## Luminosity Function Evolution

- Gronwall et al. (2007) Deharveng et al. (2008)
  z~3.1
  .2 < z < .35</li>
- Lyman Alpha Luminosity:  $L^* = 10^{42.64} \text{ erg} \cdot \text{s}^{-1} \rightarrow L^* = 10^{42} \text{ erg} \cdot \text{s}^{-1}$
- Characteristic
   Number Density:

$$\Phi^* = 10^{-2.84} \text{ Mpc}^{-3} \rightarrow \Phi^* = 10^{-3.5} \text{ Mpc}^{-3}$$



## Raw Image



## **Basic Reductions**

Crosstalk, overscan, trim correction

- Zeros  $\rightarrow$  Combine
- Flats  $\rightarrow$  Normalize  $\rightarrow$  Combine
- Objects
- Cosmic Ray Rejection
  - Crgrow (residuals)
- WCS fitting
  - Inconsistencies with catalogs (mscimage)

## Reductions cont.

Clobber bad pixel masks

 Replace bad pixels with sky values

 Mscimage

 Resampled 8-extension object/bpm frames into single images with simple WCS

#### Mscimatch

Match intensity scales for reconstructed mosaic image



## Post-Mscimage



## Stacking

#### Mscstack

- Combines multiple reconstructed mosaic images using WCS
- Excludes chip gaps
- Increases effective depth of field (makes
   LAE detection easier)

Data from 2009 fully stacked (best seeing)

 If 2007 and 2008 sets give good stack, possibly combine with 2009











## Post Stacking

#### Fit stellar population models

- Compare to 3 < z < 6 samples
- Study how age, dust content, stellar masses evolve with redshift
- Follow up NIR spectroscopy
  - Measure metallicity via N2, O3N2, or R23 indices
  - Study mass-metallicity relation evolution with redshift

Thank you!

Questions?