IS THIS REALLY A CLUSTER?: SDSS-III/APOGEE CLUSTER TARGET SELECTION

Kelly Jackson (Senior - TCU) Dr. Peter Frinchaboy (TCU)

Why star clusters?

- Open cluster 100s to 1000s of stars that formed at the same time from the same cloud of interstellar gas and dust
- Stars have the same properties: age, distance from us, metallicity, and extinction value
- Extinction dimming of starlight due to dust in ISM
- Star clusters are useful for studying stellar evolution and the cluster's surrounding galaxy (e.g. the Milky Way)

- Utilizing near to mid-infrared data collected from:
 - Two Micron All-Sky Survey (2MASS)
 - Spitzer Space Telescope/ GLIMPSE-I, II, 3D, & 360 surveys
 - Wide-Field Infrared Survey Explorer (WISE)

2MASS			GLIMPSE	
J	Н	K	3.6	4.5
1.6 μm	2.1 μm	2.2 μm	3.6 µm	4.5 μm

• Areas within the Milky Way that have been covered by GLIMPSE surveys:

How to Isolate a Cluster

- Obtain extinction (A_K) values for each star in a cluster
 - Raleigh Jeans Color Excess Method (Majewski, Zasowski, & Nidever 2011)
- Isolate area twice the cluster radius and compare stars within the cluster radius to outer "field stars".
- Windows a range of A_K and step through the A_K values.

Compare normalized ratio of stars within cluster radius to background at each step through A_K values
Identify overdensity in A_K space

Application to (APC

- <u>APOGEE</u> large-scale spectroscopic survey of Galactic stars.
 - *H*-band (1.5-1.7 μ m), R ~ 25,000, σ_{RV} ~ 300 m/s.
 - 100,000 stars, *S*/*N* = 100/pixel, 15 elements/star.
- Will utilize star clusters in order to explore Galactic evolution
 - Can directly link age and chemistry
- Isolated cluster members (especially redgiants) in targeted fields are submitted as high-priority targets.

Future Work

- Complications arise from wide range of cluster sizes and distances
 - Problematic small, distant clusters and large, nearby clusters
- Need to determine what parameters work best for the majority of clusters
- Soon will utilize more WISE fields and UKIDSS to get deeper data

Acknowledgements

- We'd like to thank the following institutions for their support:
 - Texas Space Grant Consortium
 - NASA/JPL (60020, 61071, 61070, 61072)
 - NSF REU grant (NSF 0851558)
 - Texas Christian University, including a 2010 Science and Engineering Research Center (TCU-SERC) grant
 - University of Texas at Austin for having us

Thank You!!

