

Sigmoid:

By Tyler Behm
Mentors:
Antonia Savcheva
Dr. Ed DeLuca

Etymology

Sigm-

Sigma

-oid

Having the shape or form of

Talk Outline

Part 1: Background

- What is the "S" made of?
- How do sigmoids evolve with time?
- How can we study sigmoids?

Part 2: REU Research

- Generate many computer models
- Find stable, best fit model

What is the "S" made of?

Cooled plasma suspend by coiled magnetic fields

How do sigmoids evolve with time?

How can we study sigmoids? •NLFFF Modeling

Tyler's Work Significance and Goals

Goals

Find best fit NLFFF model in axial/poloidal flux space

Significance

Place boundaries on energy in field Predict stability of sigmoid

Tyler's Work Two Sets of Data

- ●Magnetogram → Fields
- ○X-Ray Images → Coronal Loops (ie Flux)
- Span axial/poloidal flux parameter space

← Same
Sigmoid →

Tyler's Work

Results from Computer Models

34 models to span flux parameter space

Goodness = Less distance from field to flux = Green (on left charts)

Conclusion

What is the "S" made of?

Magnetically floated, cool coronal plasma

How do sigmoids evolve with time?

Magnetic reconnection and eruptions

How can we study sigmoids?

NLFFF Modeling + 1 intern = 2 sigmoids modeled

Special Thanks

- NSF REU solar physics program at CfA, grant number ATM-0851866 for funding
- Kathy, Marie, and all REU organizers
- Antonia and Ed for excellent mentorship
- Aad for the Coronal Modeling Software
- CfA for hospitality
- Trae, Jonathan, and Alisdair for computer help

References

Importance of Sigmoid Studies: Canfield et al. (1999, 2007)

NLFFF Modeling: Savcheva, Van Ballegooijen (2009)

QSL's: Domoulin, Hénoux, Priest, Mandrini (1996)

Illustrations: solarmuri.ssl.berkeley.edu/ ~hhudson/cartoons/

Tyler's Work Step 3: Make Sure It's Stable

Best Fit Model

Higher Flux Model

Tyler's Work Step 4: Make Quasi-Separatrix Layers

Tyler's Work Step 4: Make Quasi-Separatrix Layers

Aug 4, 2010

Aug 10, 2010

Free Energy = 6.0×10^{31} erg Helicity = -5.2×10^{42} Mx²

Free Energy = 3.4×10^{31} erg Helicity = -2.3×10^{42} Mx²

Tyler's Work Step 4: Make Quasi-Separatrix Layers

Aug 4, 2010

Free Energy = 6.0×10^{31} erg Helicity = -5.2×10^{42} Mx²

Aug 10, 2010

Free Energy = 3.4×10^{31} erg Helicity = -2.3×10^{42} Mx²