

The Hobby-Eberly Telescope Dark Energy Experiment

Gary J. Hill, McDonald Observatory (on behalf of the HETDEX Consortium)

Hobby-Eberly Telescope Dark Energy Experiment

THE UNIVERSITY OF TEXAS AT AUSTIN

Department of Astronomy

1 University Station, C1400 • Austin, Texas 78712-0259

University of Texas:

Josh Adams Guillermo Blanc Mark Cornell Taylor Chonis Karl Gebhardt (PS) Lei Hao Gary Hill (Pl) Donghui Joeng Eiichiro Komatsu Hanshin Lee Phillip MacQueen Jeremy Murphy Marc Rafal (PM)

MPE/USM:

Ralf Bender Niv Drory Ulrich Hopp Ralf Koehler Helena Relke Jochen Weller

AIP:

Andreas Kelz Volker Mueller Martin Roth Mathias Steinmetz Lutz Wisotzki

Penn State University:

AIP

Robin Ciardullo Caryl Gronwall Larry Ramsey Don Schneider

Texas A&M:

Darren DePoy Steven Finkelstein Jennifer Marshall Nicolas Suntzeff

Eric Gawiser (Rutgers) Povilas Palunas (LCO)

Hobby-Eberly Telescope Dark Energy Experiment

- HETDEX is:
 - Wide Field Upgrade of HET to have
 22- arcmin diameter field
 - Deployment of the hugely replicated integral field spectrograph, VIRUS with 33k fibers on the sky
 - Execution of a huge blind spectroscopic survey containing 0.8M Ly-a emitting galaxies (LAEs) with 1.9 < z < 3.5
 - Aim to constrain the evolution of dark energy via the power spectrum of LAEs
- HETDEX has been in development since 2007
 - First light for wide field upgrade projected for Q3 2011
 - First observations in Fall 2011

HETDEX Overview

- Two observational approaches to make progress on DE
 - Get the tightest possible constraints at low redshift where effect of DE is stronger
 - Go to higher redshift where we can measure the evolution
 - Both approaches are needed
- Almost all projects are focused at z<1.5
 - Due to observational constraints
- Aims of HETDEX
 - Measure the expansion rate to percent accuracy at z>2
 - Provide a direct constraint on the density of DE at z>2
 - Provide the best measure of curvature
 - Complement low z experiments (DES and BOSS)
- Tracers are Ly- α emitting galaxies
 - Numerous, easily detected with integral field spectrograph

- Blind survey with 150 integral field spectrographs, known as VIRUS
 - 33,600 spectra per exposure
 - 350 550 nm
 - Line flux limit 3.5e-17 and m_{AB} ~22
- 420 sq. deg. area survey will contain spectroscopy of:
 - 0.8 million LAEs in 9 cubic Gpc volume 1.9 < z < 3.5
 - 1 million [OII] emitters z < 0.48
 - 0.4 million other galaxies
 - 0.25 million stars
 - 2000 galaxy clusters
 - 7000 QSOs z < 3.5</p>
 - 20,000 NVSS radio sources
- VIRUS is also superb for
 - Tracing DM in galaxies
 - Identifying sub-mm galaxies
 - Surveying for gravitationally lensed LAEs

Realization of BAO in HETDEX

Current and Planned Effort on Expansion Rate

The power of the power

Entire shape of power spectrum can constrain distance and contains information about structure growth – if non-linear growth can be understood (Shoji, Jeong & Komatsu, 2009, ApJ, 693, 1404)

The power of the power

Non-linear growth in real and redshift space can be modelled with 3rd Order Perturbation theory - distinctive shape provides distance measure

Jeong & Komatsu, 2006, ApJ, 651, 619 Jeong & Komatsu, 2009, ApJ, 691,569

Jeong, D., and Komatsu, E., 2010, "<u>Primordial non-Gaussianity, scale-</u> dependent bias, and the bispectrum of galaxies", arXiv:0904.0497

Talk to Donghui, Masa, and Eiichiro about further applications of the power spectrum! * Papers can be viewed at <u>hetdex.org</u> under "Resources"

How to do it..... VIRUS

- Replicated integral field spectrographs (VIRUS)
 - Inexpensive fiber-fed unit IFS copied 150 times; deployed as 75 pairs
 - Each pair fed by 50x50 arcsec² IFU with 448 fibers of 1.5" diameter
 - 33,600 spectra per exposure
 - Three exposures fill area of IFU and observe 54 sq. arcmin total area
 - 350-550 nm coverage, R~700
- VIRUS prototype deployed in 2006

VIRUS on HET

- HET is most efficient observing in the north
 - Primary 420 sq. degree Spring survey area will be located in north galactic cap
 - Fill-factor of observed area within this field will be 1/7, so 60 sq. deg.
 Observed in total
 - Will cover this area with a survey in g,r with the WIYN ODI to AB~25.5 to provide continuum observations
- A second equatorial Fall field will provide overlap with surveys in other wavebands and will provide access from southern hemisphere telescopes
 - Most likely field is XMM-LSS
 - 60 sq. deg. area of low extinction
 - Expect to cover some part of this area more densely (high k)
 - Hope to start observing in Fall 2011 to provide a first rapid survey for early characterization and science results
 - Overlap with Spitzer Warm surveys and coverage from KMOS on VLT will be particularly interesting for characterizing the LAE population

Main Survey on sky

- Dec δ = 53-63^o optimal for HET
- 420 sq. degrees covered
 - 60 sq. deg observed
 - 20 minutes per observation
- 4000 observations in 3 years
- Can be extended to earlier and later RA for more efficient observing before galactic extinction is greater than A_U=0.1 mag

Reddening map with baseline survey limits

- Main aim is a large sample of LAEs and other line emitting galaxies
 - 0.8M LAEs (1.9 < z < 3.5), 1M
 [OII] emitters (0 < z < 0.5)
 - Discriminated to 10% level with an equivalent width cut via a wide field imaging survey with WIYN ODI
- Blind spectroscopy will cover a wide range of interesting objects
 - AGN, clusters, metal-poor stars

Redshift	1.9	2.5	3.0	3.5
Wavelength (nm)	350	425	485	550
Line Sensitivity (10 ⁻¹⁷ erg/cm ² /s) for 0.8M galaxies	9.5	3.9	3.4	3.5
Continuum Sensitivity of baseline (AB mag)	21.5	22.0	21.9	21.6

HETDEX Pilot Survey

- Pilot survey using VIRUS-P
 - Demonstrate method and detection limits
 - Develop software
 - Measure LAE evolution and bias
- COSMOS, GOODS-N, XMM-LSS, and MUNICS-S2 fields
 - Fields selected to have deep multi-wavelength broad-band imaging
- 200 arcmin² surveyed in 2 years
 - expect ~300 LAEs in final catalog
 - 1.3x10⁶ cubic Mpc comoving volume
 - 6 hours observation time per field

Example Data

- 6 position dither pattern ensures good field coverage
- Three 20 min exposures at each position
- 2 hr of effective exposure time

Example Data

- VIRUS data reduced with two independent pipelines
- VACCINE (U. Texas) and CURE (USM/MPE Munich)
- 5σ flux limit of ~6x10⁻¹⁷ erg/s/cm² for a point-source and unresolved line

Ly- α Emitters

Science from HETDEX and VIRUS

- Detection of dark energy at z>2
- Curvature to 0.1%
- > Non-gaussianity measure as good as Planck
- Best measure of total neutrino mass
- Detection of cosmic web in emission
- Nature of LAE
- AGN-Galaxy correlations
- SFR at z<0.4</p>
- > Dark matter in nearby galaxies
- Stellar populations at large radii
- Map 2000 clusters kinematically
- Galactic structure from stellar kinematics
- Low metallicity stars

VIRUS-P EXPLORATION OF NEARBY GALAXIES

Guillermo Blanc et al.

- 45 LAEs in COSMOS field
 - Follow-up spectroscopy with HET LRS is confirming those at z>2.5
- Prediction based on non-evolving LF and measured instrument sensitivity

Hobby-Eberly Telescope Dark Energy Experiment VIRUS Production at UT & TAMU

- Production design of VIRUS is complete and prototypes are manufactured
- TAMU will lead the assembly of VIRUS
 - Ideal project to jump-start nascent instrument group
 - Large lab space available to set up integration & test line
- This project is cementing the strong ties that are developing in astronomy between UT Austin and TAMU

- Design makes extensive use of castings in both the collimator and camera
 - Even in small quantities the castings are proving very costeffective (and coming in less expensive than budgeted)

VIRUS Collimator and camera parts

VIRUS Integral Field Unit

- Bundles of fibers totaling 33,600 enable the weight of VIRUS to be mounted low
 - Each IFU is a bundle of 448 fibers split into two slits to feed a spectrograph pair
 - Simple design maximizes throughput and minimizes cost
- Development in collaboration with AIP
 - nine already delivered

VIRUS field layout

- Grid layout of IFUs with ¼ fill factor
 - feeds for other instruments at the middle of the field
- Allows parallel observations with VIRUS
- Baseline 75 IFUs will leave some gaps, but goal is to fill the matrix

• VIRUS

- The HETDEX project will detect the effect of DE on expansion at z~2 even if it is a cosmological constant
- It will provide the first largescale 3-D view of the high redshift cosmic web
- The survey will contain a huge range of interesting objects
- \$25.5M raised of the required \$34M
- The survey will begin in fall 2011

