Dark Matter at the LHC

Bhaskar Dutta

Texas A&M University

Texas Cosmology Network Meeting, UT, Austin

Dark Matter at the LHC

Dark Matter and SUSY

We need to observe the new layer of matter in order to establish this explanation

SUSY at the LHC

The signal : jets + leptons + missing E_T

Dark Matter at the LHC

SUSY Models

Minimal Supersymmetry Standard Model has more than 100 parameters

•We may not have enough observables to establish them

•We start with a simple scenario and go to complicated cases

mSUGRA: Minimal Scenario

Observables at the LHC

The observables include: Z, h, W, τ, t, b, jet, *I* and missing energy

The observables are determined by the underlying physics of the model

100

 $M_{\tilde{\chi}^0_2}$ = 260.3 GeV

150

M^{vis}_{ττ} (GeV)

 $M_{\tilde{\chi}^0_2}$ = 321.5 GeV

200

250

Case 1. Coannihilation Region

Low energy taus characterize the CA region

However, one needs to measure the model parameters to predict the dark matter content in this scenario

Arnowitt, Dutta, Kamon, Toback'08

Phys.Rev.Lett.100:231802,2008. Dark Matter at the LHC

Determining Ωh^2

✓ Solved by inverting the following functions:

Case 3 : Focus Point /HB

Prospects at the LHC: A few mass measurements are available: 2nd and 3rd neutralinos, and gluino

Dark Matter at the LHC

Case 4 : Non-U SUGRA

Nature may not be so kind ... Our studies have been done based on a minimal scenario (= mSUGRA).

```
...
Let's consider a non-universal scenario: Higgs non-
universality: m_{Hu}, m_{Hd} \neq m_0
```

Steps:

- 1) Reduce Higgs coupling parameter, µ, by increasing
- 2) m_{Hu} , ... \rightarrow More annihilation (less abundance)
- \rightarrow correct values of Ωh^2
- 3) Find smoking gun signals \rightarrow Technique to calculate Ωh^2

Extraction of Model Parameters

Utilizing the characteristic decays, we can create some observables to determine our model parameters:

 $\frac{M_{\rm eff}(m_0, m_{1/2})}{M_{j_{\tau\tau}}(m_0, m_{1/2})} \Rightarrow m_0, m_{1/2}$

 $\begin{array}{l} M_{W\tau\tau}(m_{1/2},\mu(m_{H_u}),\tan\beta)\\ M_{jW}(m_0,m_{1/2},\mu(m_{H_u}),\tan\beta) \end{array} \Rightarrow \mu(m_{H_u}),\tan\beta \end{array}$

 $M_{\rm eff}^{(b)}(m_0, m_{1/2}, \mu(m_{H_u}), \tan\beta, A_0) \Rightarrow A_0$

End-points-nonuniversal

Conclusion

Signature contains missing energy (R parity conserving) many jets and leptons : **Discovering SUSY should not be a problem**!

Once SUSY is discovered, attempts will be made to measure the sparticle masses (highly non trivial!), establish the model and make connection between particle physics and cosmology

Different cosmologically motivated regions of the minimal model have distinct signatures. It is possible to determine model parameters and the relic density based on the LHC measurements

Work is in progress to determine non-universal model Parameters----looks promising