During most of the history of the uni-
verse, from well before the end of infla-
tion until recently (ie., T < 101K),
the fluctuations we observe had physi-
cal wavelengths that were “outside the
horizon,” in the sense that the co-moving
wave number ¢ satisfied

q/a(t) < H(t), H=a/a
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During this era, there was one “adi-
abatic” scalar mode for Wthh R was
conserved: Bardeen 1980)

R=-V+ Héu [aka. 4 )

(where 2U = coefficient of d;; in dg;;,
and ou = velocity potential in TH"). In
adiabatic mode, dp/(p + p) is the same
for all constituents of the universe, as
seen in CMB. The universe stayed in
this adiabatic mode if either

e Inflation was driven by the energy of
a single “inflaton” field, or

e The universe ever spent a sufficiently
long time in a state of thermal equi-
librium with no non-zero values for
conserved quantities.
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unce adlabatic, 1t st ays adlabaltlC:
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Also, there is one tensor mode in which
the gravitational wave amplitude ~ is
conserved outside the horizon (The only
other mode decays rapidly.)

We understand how fluctuations evolve
after they enter the horizon. So all we
need to calculate microwave background
anisotropies and large scale structure of
matter (while still linear) are correlation
functions:

&7’ x) RO(x)... '70(;4’)...>

at times (indicated by superscript “o0”)
when wavelength is outside the horizon.



Here ( ) refers to expectation value in
“In” vacuum, defined as state that ap-
pears like vacuum at early times, when
q/a > H. So we want to calculate

ﬂ (vac, in|dgq(x,t) dop(y, t) - - - [vac, in)
not
(vac, out|T{ 8ga(x, ) day(y, ') - |

which is related to the S-matrix. And
[vac, out) is not proportional to |vac, in)!

vac, in) ,

(6¢q is any field: R, 4¥, etc. )



Schwinger “in-in” formalism:

— < T exp (z /_t VI(t’) dt’)}

= ; Lrphy g4t
Texp( z/_OOV (t)dt):l >O

< " > = bare vacuum expectation value.
v = tgrms in Hamiltonian of third or
higher order in perturbations.

I indicates time-dependence generated
by terms in Hamiltonian of second order
in perturbations.

0¢a(X,1) 00p(y, 1) - -

X




For comparison, in calculating the
S-matrix we need
vac, in>

<Vac, out|dpg(x,t) dp(y,t) - -
t
X T exp (—i Vj(t’) dt’) >
. 0

= <5¢é(X, t) 5¢£(Y? t) =i



Graphical Interpretation:

Each vertex can be either of 2 kinds, L
or R. With N vertices, we sum over 2V
possibilities, with an extra minus 81gn
for each L vertex.

Propagators:
b6L(x,t) LevanaL §¢f(x,1)
(T{8¢4(x,1) 6¢5(x',¢') })o

(5<;?b£(x,t) Reswwrs R (5¢£(X,,t,) |
(T{d¢,(x, 1) 665(x,")})o

Spg(x,t) LeowmaamsR §gy(x',t)
(5¢a(x,t) 63, )0



THEOREM: If 6¢¢ is the solution of
the classical field equations with free field
initial conditions for ¢/a > H, then
the bare vacuum expectation value

(668 (x, 1) 605 (y, 1) -+ )
is the sum of the tree graphs for

<vac; in|0gq(x,t) dgp(y,t) - - - |vac, 'm>

'SW 2005] For instance,
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Maldacena 2002 (RRR) (RR7) ,&c
[Also Gangui et al 1993; Creminelli &
Zaldarriaga 2004; Rigopoulos et al 2004;
Seery & Lidsey 2005




TRISPECTRUM:

Correlation functions calculated in this
way depend on the details of inflation
only near the time of horizon exit. Non-
Gaussian correlations are suppressed by
factors of GH&? ~ 10712, where Hy
is Hubble constant at horizon exit.But

18 = i - ~ & E 3 —~ ey -". Il 2SRk L E » .‘.’ﬁ O Loy < vy 1
this formalism 1s purely classical.



Cosmological non-classical fluctuations:
alzetta & Hu, 1987; Morikawa 1995
'E'é:@_-'-‘siz;_i::. & Wooda 1 1995, 1997, 1998:

nelmi & Woodard 2002, 2004: Tr’
i‘-f'“st‘l'el"\*i@t & ‘\()wﬂi.f 2003; Prokope
' \A/

Woodard, 2003: B(’T\-’é{lla"‘ﬁ"r:}i-'i;’-f. VELa

& Sanchez 2005: Brunier. Onemli.

A7 A nwel SEAE T ia]] ~ By HaAl v SHME
Woodard 2005: Collins & Holman 2005.

Cosmological Correlations

Do results depend on details of expan-
sion only near horizon exit, like tree cal-
culation, rather than over whole history
of inflation? If so, L-loop corrections
are suppressed by

(GHQ)L =2 1072,
Hg = H(t) at horizon exit.
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Example:Inflation with one inflaton, plus
many massless scalar fields:

Co-moving gauge:

lmflatm: (X, t) = P(1)

A ™~ a A

/\ I Y AT
o A | ]
' ‘h o L.

9ij = a2(t)6ij (l—I—QR(X, t))—l—%j(x, t)+. ..

0ivij = i = 0
2R(x, t)
giilj= =L= HD) +
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LoRR = _aR
= O LN -
9 Zn: i0nUi0n QHRZaiUnaiUr
n

a
+—0;R §n ' Endjon — ea®d, (v—%) N bndio
‘ n1vn
mn
_a R 52 + 3a° 52
Vi 4 nt RZO‘H.
n

I .
R’ xit] = /d?’q [e?’q'qu(t)oz(q) +C.C.]

I | '
op(X,t) = /d3q [ezq'xaq(t)oz(n, q)—|—c.c.}
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For ¢/aH <« 1,

9 5
0 q- 0 q-
Ry — Rq+0 ((LQHQ) , Og— 0q+O (a2H2> :

a
EJRR = —572 Z 8?;07182'0'7;) R Z 820'7;,8?,0‘7
n a 1 e -

-i-—@ R Z 5n0ion — 6&38 ( _Qé) Z G0y,
T

a '
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o> o'

13



To see cancellations, use the more
convenient formula:
vac, 11 >

<Vac,in
o tn 2
= Z / dtn / " / dt1

< VI (t2),

V() 36h(x >5¢£<y,t)---]--ﬂ>
0

0¢a(X,t) 0p(y,t) - -

SW 2005
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R(x,1), Riy, )| = [ d’qedy

(Ra®R;(t) — Ryt )Ry (1))

R,R|~a>, [R,R|~a>
R,R] ~a™°
Likewise for op,. |
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Theorems:

1. In the theory of gravity plus scalars

with purely gravitational interactions,

the total number of factors of a(t) in

any subintegral over times is

so correlations receive no contribution

from times long after horizon exit. Sw 2008

Example: N > 1 scalars

/ &’z 'Y (vac, In|R(x,t) R(y,t)|vac, in)

8mG HA(t —{)-
—— ( ) classical
4(2m)3le(tq)lg?
m[8rG H? (4 J)*N
5 ERE Ing+C] one loop
£ .

where t; = time of horizon exit.
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Result 1 does not apply with other
interactions, such as:

v/Det g V(o) ,+/Det g opyp , /Det g AypyHo
because .
v/ Detg o< a” .

But instead we have:

2. In all theories, the total number of
factors of a(t) in any subintegral over
times is at most zero. so the contribu-
tion to correlations from times long af-
ter horizon exit is at most enhanced by
powers of In a. SW 2006



