

Texas Cosmology Network

(Austin, September 2006)

The First Stars

Volker Bromm

The University of Texas at Austin

From the Dark Ages to the Cosmic Renaissance

FROM THE DARK AGES ...

(Larson & Bromm, Scientific American, Dec. 2001)

• First Stars — Transition from Simplicity to Complexity

The James Webb Space Telescope: (Next Generation Space Telescope)

- Launch in ~2013
- Near IR sensitivity of ~ 1 nJy
- ~ 4' x 4' FOV

Direct Imaging of the First Stars

Hierarchical Structure Formation:

Merger tree

(Beasley et al. 2002, MNRAS, 333, 383)

Region of Primordial Star Formation

Mass vs. redshift

- Gravitational Evolution of DM 4σ 3σ |2σ 10⁸ < t_{free-fai} Gas Microphysic: 10^{7} - Can gas sufficiently cool? [[®]₩] 10⁶ Pressure $- t_{cool} < t_{ff}$ (Rees-Ostriker) opposing collapse 10^{5} 10^{4} No cooling possible 100 1000 10 1 + z...
- Collapse of First Luminous Objects expected:
 - at: $z_{coll} = 20 30$
 - with total mass: $M \sim 10^6 M_{\odot}$

What happens inside primordial minihalos?

Massive Black Hole

Stars (single or multiple)

 Most important question: How massive were the first stars?

The Physics of Population III

Simplified physics

- No magnetic fields yet (?)
- No metals → no dust
- Initial conditions given by CDM
 - → Well-posed problem

• <u>Problem:</u>

How to cool primordial gas?

- No metals —> different cooling
- Below 10⁴ K, main coolant is H₂

• H₂ chemistry

- Cooling sensitive to H₂ abundance
- H₂ formed in non-equilibrium
 - → Have to solve coupled set of rate equations

 T_{vir} for Pop III

Simulating the Formation of the First Stars: (Bromm, Coppi, & Larson and Bromm & Hernquist)

- Use TREESPH / Gadget (both DM and gas)
- Radiative cooling of primordial gas
- Non-equilibrium chemistry
- Initial conditions: ACDM
- Modifications to SPH:
 - sink particles
 - particle splitting

Cosmological Initial Conditions

Consider situation at z = 20

Gas density Primordial Object

The First Star-Forming Region ("minihalos") projected gas density at z=20

~ 7 kpc (proper)

Formation of a Population III Star (Bromm, Coppi, & Larson 1999, 2002; Bromm & Loeb 2004)

- $n_{crit} \sim 10^3$ 10^4 cm⁻³ (NLTE \rightarrow LTE)
- Corresponding Jeans mass: $M_J \sim 10^3 M_o$

The Crucial Role of Accretion

• Final mass depends on accretion from dust-free Envelope

Clump:

M~M

The Crucial Role of Accretion

 Final mass depends on accretion from dust-free Envelope

- Development of core-envelope structure - Omukai & Nishi 1998, Ripamonti et al. 2002
- $M_{core} \sim 10^{-3} M_o \rightarrow very similar to Pop. I$
- Accretion onto core very different!

• $dM/dt_{acc} \sim M_J / t_{ff} \sim T^{3/2}$ (Pop I: T ~ 10 K, Pop III: T ~ 300 K)

•Can the accretion be shut off in the absence of dust?

Protostellar Collapse Bromm & Loeb 2004, New Astronomy, 9, 353

Simulate further fate of the clump

25 pc

0.5 pc

Accretion onto a Primordial Protostar

dM/dt vs. time

M vs. time

Upper limit:

 $M_{*} (t = 3 \times 10^{6} \,\mathrm{yr}) \approx 500 M_{\odot}$

Accretion onto a Primordial Protostar

Kelvin-Helmholtz time: t_{KH}~GM²/(LR)~10⁵ yr

- Onset of nuclear fusion

- violent radiative feedback

→ accretion stops

More realistic mass estimate: M(t=t_{KH})~120 M_{sun}

The First Stars: The "Standard" Model

Numerical simulations

- Bromm, Coppi, & Larson (1999, 2002)
- Abel, Bryan, & Norman (2000, 2002)
- Nakamura & Umemura (2001, 2002)

Implications of a Heavy IMF For the First Stars (Bromm, Kudritzki, Loeb 2001, ApJ, 552, 464)

- Consider: $100 \text{ M}_{o} < \text{M} < 1000 \text{ M}_{o} (\text{VMO})$
- Structure determined by:
 - Radiation pressure, Luminosity close to EDDINGTON limit

log L vs. log T_{eff}

 For Pop III: T_{eff} ~ 110,000 K

 Iambda peak ~ 250 Å
 (close to He II ionization edge)

Wilkinson Microwave Anisotropy Probe:

Polarization \rightarrow optical depth to Thomson scattering: ($\tau = 0.09 \pm 0.04$) \rightarrow Signature of the First Stars

CMB photon-scattering from free electrons

Ionization History of the Universe (Greif & Bromm 2006; astro-ph/0604367)

SFR vs z

à Pop III star formation
 must have been
 terminated z≥10

lonized fraction vs z

Primordial HII Regions (Alvarez, Bromm, & Shapiro 2006; astro-ph/0507684)

z = 20

← 13.6 kpc → (proper)

Primordial HII Regions (Alvarez, Bromm, & Shapiro 2006; astro-ph/0507684)

• self-similar "champagne flow" (Shu et al. 2002)

Primordial HII Regions (Alvarez, Bromm, & Shapiro 2006; astro-ph/0507684)

← 13.6 kpc

M*=80M

M*=200Mo

The Death of the First Stars: (Heger et al. 2003)

Initial Stellar Mass

The First Supernova Explosions

(Bromm, Yoshida & Hernquist 2003, ApJ, 596, L135)

Physics of Pair-instability Supernovae

M ~ 140 - 260 M_c

- -T>10⁹K
- $ph+ph \rightarrow e^-e^+$
- grav. runaway collapse
- large jump in core T
- explosive nuclear burning
- implosion \rightarrow explosion
- no compact remnant
- all heavy elements dispersed
- distinct nucleosynthetic pattern

HII Regions around the First Stars

1 kpc

The First Supernova-Explosion

Gas density

The First Supernova-Explosion

Metal Distribution

~ 1 kpc

Paradise Lost: The Transition to Population II (Bromm, Ferrara, Coppi, & Larson 2001, MNRAS, 328, 969)

- Add trace amount of metals
- Limiting case of no H₂
- Heating by photoelectric effect on dust grains

Consider two identical (other than Z) simulations !

Effect of Metallicity:

$Z = 10^{-4} Z_{o}$

$Z = 10^{-3} Z_{o}$

Insufficient cooling

Vigorous fragmentation

 \rightarrow Critical metallicity: $Z_{crit} \sim 5 \times 10^{-4} Z_{o}$

The Pop III ----- Pop II Transition (Yoshida, Bromm & Hernquist 2004, ApJ, 605, 579)

IGM Metallicity vs. redshift

Chemical Feedback: Pop III à Pop II transition (Bromm & Loeb 2006; astro-ph/0509303)

SF History

Forming the First Low-mass Stars: (Bromm & Loeb 2003, Nature 425, 812)

- Abundance pattern:
 HE0107-5240, 1327-2326
- very Fe-poor
- very C/O-rich
- Pop III → Pop II:
- driven by: CII, OI (fine-structure transitions)
- Minimum abundances:
- [C/H] ~ -3.5
- [O/H] ~ -3.1
- Identify truly 2nd gen. stars!

Relic from the Dawn of Time: HE0107-5240: [Fe/H] = - 5.3 (Christlieb et al. 2002)

• How could such a low-mass star have formed ?

Formation of the First Quasars (Bromm & Loeb 2003, ApJ, 596, 34) • Seed BH by direct collapse of primordial gas cloud Stars Gas (Loeb & Rasio 1994, ApJ, 432, 52)

• Problem:

- Gas cooling
- Fragmentation
- Star Formation
- Negative Feedback (SNe)

No compact central object!

Mass ~ $10^9 M_{o,} R ~ 1 \text{ kpc}$ zvir = 5, no DM

First Dwarf Galaxies as Sites of BH Formation

• 2 sigma peak

• Suppress star formation:

- Photo-dissociation of H₂:

H2 + h nu → 2 H

- Lyman – Werner photons: h nu = 11.2 - 13.6 eV

Cosmological Context

1 co-moving Mpc

En Route to a Supermassive Black Hole?

Consider gas distribution in central 100 pc

<u>Low-spin</u>

High-spin

What is further fate of gas cloud?

- Radiation-pressure supported: t_{cool} >> t_{ff}

Gamma-Ray Bursts as Probes of the First Stars:

- GRB progenitors → massive stars
- GRBs expected to trace cosmic SFH
- Swift mission:
 - Launched in 2004
 - - GRBs from z > 15

High-z GRBs from Population III Progenitors:

(Bromm & Loeb 2006; astro-ph/0509303)

<u>SF History</u>

GRB Redshift Distribution

- expect only small number of Pop III bursts over ~5 yr Swift mission
- Fraction of GRBs detected by *Swift* from z > 5: ~10%

Summary

- Primordial gas typically attains:
 T ~ 200 300 K
 n ~ 10³ 10⁴ cm⁻³
- Corresponding Jeans mass: M_J ~ 10 ³ M_o
- Pop III SF might have favored very massive stars
- Transition to Pop II driven by presence of metals (z_{trans} ~ 15 +- 5)
- PISNe completely disrupt mini-halos and enriches surroundings
- 2nd generation of intermediate-mass stars ("Pop II.5")

Perspectives:

- Further fate of clumps
 - Feedback of protostar on its envelope
 - Inclusion of opacity effects (radiative transfer)

- The ``Second Generation of Stars'' (high-z dwarf glaxies)
- SN feedback and metal enrichment from the first stars
- What were the seeds for the first quasars?
- When did QSO activity first begin?