Lyman-alpha intensity mapping during the Epoch of Reionization

Mário G. Santos CENTRA – IST (Austin, May 15, 2012)

Marta Silva, Mario G. Santos, Yan Gong, Asantha Cooray (2012), arXiv:1205.1493

Intensity mapping?

- Make 3d maps during EoR
- Not resolving galaxies
- Measure intensity over many small frequency bands and over a large area of the sky (low angular resolution)
- Each band will map into an effective $Ly\alpha$ line redshift/position along line of sight
- If Lyα is only signal we're done after beating noise...
- Well, need to remove "foregrounds", e.g. everything else that falls into the band (coming from lower redshifts)
- Then make 3d boxes at "middle" redshift, get 3d power spectrum and you're done!

ntensity

Sources of Ly α emission

- **Continuum** Ly- α emission from stars
 - Scattering of Ly-n photons in the IGM
- Hydrogen **Recombinations** (galaxies and IGM)
- HI **Collisional** excitations (galaxies and IGM)
- Gas cooling (gravitational collapse)

X-ray emission from Quasars?

Galaxies / IGM

- First assumption use a two-medium model:
 - Galaxies
 - "Constant" temperature
 - "Constant" ionization fraction
 - "closed box"
 - IGM
 - Temperature increasing
 - Ionization fraction increasing
 - Should be ionized around galaxies...

 - Ly- α escape fraction (no scattering in IGM)
 - HI "glow" around galaxies?

Ly- α from Galaxies: Parameters

- Ionizing photon rate from stars relate to Star Formation Rate: $\dot{N}_{\rm ion} = Q_{\rm ion} \times {
 m SFR}$
- $Q_{ion} \sim 5.38 \times 10^{60} \text{ UV photons/M}_{\odot}$
- Salpeter IMF
- Ionizing Fluxes from Shaerer 2002
- (POP II, OB stars)
- 20% error?
- UV escape fraction:

 $f_{\rm esc}^{UV}(M,z) = \exp\left[-\alpha(z)M^{\beta(z)}\right]$

20% uncertainty?

Ly- α from Galaxies: Parameters

- Average number of Ly α photons per recombination:
 - f_{rec} ~ 0.66 (Gould & Weinberg, 1996)
 - + 2-photon emission
- Ly α escape fraction (related to dust absorption)

$$f_{esc}^{\text{Ly}\alpha}(z) = C_{\text{dust}} \times 10^{-3} (1+z)^{\xi}$$

- Cdust ~ 3.34
- ξ ~ 2.57
- Mass dependence?

Hayes et al. (2011)

Ly- α from Galaxies

Hydrogen Recombinations:

$$\dot{N}_{\rm Ly\alpha} = f_{\rm esc}^{\rm Ly\alpha} \times A_{He} f_{\rm rec} \times (1 - f_{\rm esc}^{\rm UV}) \times \dot{N}_{\rm ion}$$
$${\rm L}_{\rm rec}^{\rm Gal} \sim 4.04 \times 10^8 \ [1 - f_{\rm esc}^{\rm UV}(M, z)] f_{\rm esc}^{\rm Ly\alpha}(z) \frac{SFR(M, z)}{{\rm M}_{\odot} {\rm yr}^{-1}} {\rm L}_{\odot}$$

Collisions - Heating/excitations:

 $\begin{array}{ll} \langle E_{\nu} \rangle \sim 21.4 \mathrm{eV} & \mbox{SED from Maraston (2005)} \\ & \sim 1\% \mbox{ for Ly} \alpha \mbox{ through excitations} \\ & \mbox{(Gould \& Weinberg '96)} \end{array}$

$$\mathcal{L}_{\mathrm{exc}}^{\mathrm{Gal}} \sim 1.05 \times 10^8 \left[1 - f_{\mathrm{esc}}^{\mathrm{UV}}(M, z)\right] f_{\mathrm{esc}}^{\mathrm{Ly}\alpha}(z) \frac{SFR(M, z)}{\mathrm{M}_{\odot} \mathrm{yr}^{-1}} \mathcal{L}_{\odot}$$

Ly- α from Galaxies

Continuum emission:

Average number of photons – connect to UV emission/Reionization: $Q_{Ly\alpha} \sim 0.63 \ Q_{ion}$ (SED from OB stars) $L_{cont}^{Gal} \sim 4.63 \times 10^8 \ f_{esc}^{Ly\alpha}(z) \frac{SFR(M,z)}{M_{\odot} yr^{-1}} L_{\odot}$

Cooling – gas collapse (negligible):

$$L_{\rm cool}^{\rm Gal}(M) \sim 44 f_{\rm esc}^{\rm Ly\alpha} \left(1 + \frac{M}{10^8}\right) \left(1 + \frac{M}{2 \times 10^{10}}\right)^{2.1} \left(1 + \frac{M}{3 \times 10^{13}}\right)^{-3} {\rm L}_{\odot}$$

Galaxies - SFR

- Top right:
 - Solid lines our model
 - Dotted lines catalogue from Guo et al. (2011)
- Top left:
 - SFR density using our simulation (red points from Bouwens et al. 2011)
- Bottom:
 - Obtained ionization fraction (x_i ~ 0.9 at z=7 and τ~ 0.07)

Intensity from Galaxies

- Luminosity functions
 - Green/blue with our SFR model
 - Yellow/black/red "observations" with Schechter function fits

$$\bar{I}_{\text{Gal}}(z) = \int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn}{dM} \frac{L_{\text{Gal}}(M, z)}{4\pi H(z)} \lambda_{\text{Ly}_{\alpha}}$$

- Total Ly α intensity from galaxies
 - blue analytical calculation using our luminosities
 - yellow using the empirical relation from Jiang et al. (2011): $L_{K98}^{Gal} \sim 2.9 \times 10^8 \frac{SFR(M,z)}{M_{\odot} \mathrm{vr}^{-1}} L_{\odot}$

More Luminosity constraints...

(from Sobral et al. 2009)

Ly α Power Spectrum from Galaxies

• Assume:

$$\delta I_{\rm GAL} = b_{\rm Ly\alpha} \bar{I}_{\rm GAL} \delta_{\rm m}(\mathbf{x}) \quad b_{\rm Ly\alpha}(z) = \frac{\int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} L_{\rm GAL} \ b(z, M)}{\int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} L_{\rm GAL}}$$

Ly α Power Spectrum from Galaxies

- Analytical calculation...
- "Continuum" emission from stars dominates
- At k ~ 1 Mpc⁻¹ (R ~ 9 Mpc), rms ~ 0.03 nWm⁻²sr⁻¹

$Ly\alpha$ IGM intensity

Analytical calculations

- Processes:
 - Recombinations
 - Radiative cooling
 - Ly-n scattering
- Depends on:
 - Ionization fraction
 - Gas temperature
 - matter density
- Need to connect to UV photons that escape galaxy and SFR
- Need simulations!

"Seminumerical" simulation

- Modified version of SimFast21 (Santos et al. 2010, www.simfast21.org)
- Start with density field

- Get halos (Sheth & Tormen)
- Minimum $10^8 M_{\odot}$
- Relate to SFR using previous model

- Relate emission for UV, Xray and Lyn photons to SFR
 - Assume POP II type stars
- Integrate temperature:
 - X-ray heating (IGM), see Santos et al. 2008/2010
 - Photoionization heating (HII bubbles)
 - Adiabatic cooling (no other cooling sources)
- At same time generate HII bubbles in a given region using condition:
 - N_{ion} ≥ N_{HI}+N_{HeI} (with "excursion-set" algorithm", e.g. Furlanetto et al. 2006)
 - Use f_{esc}!
 - Take into account Recombinations (using temperature, n_HII)
 - Add back recombined HI to bubble

- Use same prescription to relate Lyα emission from Galaxies to SFR
- Calculate IGM Lyα luminosity density from recombinations and excitations/heating (direct excitations negligible)
- Calculate luminosity density from scattering of Lyn photons in the IGM

$Ly\alpha$ at z=10

 Note: Ionized bubbles contribute to IGM because they are not 100% ionized – main contribution in IGM from excitations through heating

Intensity

3d Power Spectrum

Galaxies

Source of emission in	$\nu I_{\nu}(z=7)$	$\nu I_{\nu}(z=8)$	$\nu I_{\nu}(z=10)$
$[\mathrm{nWm}^{-2}\mathrm{sr}^{-1}]$			
Recombinations	3.9×10^{-3}	2.3×10^{-3}	5.7×10^{-4}
Excitations	1.4×10^{-3}	$8.0 imes 10^{-4}$	2.0×10^{-4}
Cooling	5.7×10^{-6}	3.0×10^{-6}	$9.5 imes 10^{-7}$
Continuum	$7.3 imes 10^{-3}$	$5.7 imes 10^{-3}$	$2.9 imes 10^{-3}$
Total	$1.3 imes 10^{-2}$	8.8×10^{-3}	$3.7 imes 10^{-3}$

• IGM

Source of emission in	$\nu I_{\nu}(z=7)$	$\nu I_{\nu}(z=8)$	$\nu I_{\nu}(z=10)$
$[\mathrm{nWm}^{-2}\mathrm{sr}^{-1}]$			
Recombinations	8.0×10^{-4}	5.5×10^{-4}	2.4×10^{-4}
Excitations	5.2×10^{-3}	1.9×10^{-3}	2.3×10^{-4}
Continuum	1.2×10^{-7}	$6.5 imes 10^{-7}$	2.1×10^{-6}
Total	$6.0 imes 10^{-3}$	$2.5 imes 10^{-3}$	$4.7 imes 10^{-4}$

Experimental issues...

- Observations ~ 1 μ m (z ~ 7)
- During the EoR we want to probe
 - 3d modes: $k \sim 0.05 \text{ Mpc}^{-1}$ to 10 Mpc $^{-1}$
 - Spatial scales: r ~ 0.5 Mpc to 125 Mpc
 - Angular scales: $\theta \sim 10^{\prime\prime}$ to 1 deg (I ~ 150 to 6.5x10⁴)
 - Band: δλ ~ 2A to 450A (dz ~ 0.0016 to 0.37 careful with cosmological evolution...)
 - Note: 450A for "one" redshift observation want many more! log SFR (M_{solar} yr⁻¹)
 - But Lyα line width will "wash out" fluctuations along line of sight, so maybe no point to go below δλ ~ 30A? (k < 0.7 Mpc⁻¹ along line of sight)

Ly\alpha widths (Ando et al. 2006)

Experimental issues...

- Noise dominated by photon count from sky glow (earth observations) or Zodiacal light (space observations)
- Foregrounds: continuum emission and other lines (H_{α}?) from low-z galaxies
- Need many continuous slices/bands to fit-out the smooth foregrounds
- Also correlate with other low-z surveys to check contamination

Don't forget other lines!

(simfast21.org)

- 21cm intensity evolution with redshift
 - Sensitive to:
 - IGM Gas density
 - IGM temperature
 - ionization fraction
 - Star formation rate
 - Lyman- α flux

See also:

- CO (Gong et al. 2011)
- CII (Gong et al. 2011)

21cm/Ly α maps at z=10

21cm/Ly α maps at z=7

$21 \text{cm/Ly}\alpha$ cross-correlation

- Cross-correlation coefficient (dashed total, solid galaxies only)
- Transition from negative to positive related to typical bubble size (increases from z=10 to z=7)

Conclusions

- We considered emission from both Galaxies and IGM
- Signal from Galaxies dominate over IGM with 1.3x10⁻² nWm⁻²sr⁻¹ at z=7 and 3.7x10⁻³ nWm⁻²sr⁻¹ at z=10
- 3d power spectrum rms ~ 0.03 nWm⁻²sr⁻¹
- Cross-correlation with 21 cm signal can help with foregrounds and provide information about the ionization process
- Ly α intensity mapping can provide a tomographic picture of the EoR but... probably need to go to space