

CIBER Measurements of the Mean Intensity of the NIR background

Shuji Matsuura (ISAS, JAXA) for the CIBER Collaboration

Near Infrared Background and the Epoch of Reionization Austin, Texas May 14, 2012

Near-infrared background WS, Austin, May 14-15, 2012

Observational limits on the NIR background

Low Resolution Spectrometer (LRS) Wavelength: $\lambda = 0.76-2.0\mu m$ Spectral resolution: $R = (\lambda/\Delta\lambda) \sim 20$

Near-infrared background WS, Austin, May 14-15, 2012

Wavelength dispersion

Calibration

- Calibration with diffuse light sources and detectors calibrated by NIST
- Pre-flight & post-flight calibrations agreed well with each other
- Absolute calibration accuracy ±2%

Near-infrared background WS, Austin, May 14-15, 2012

Science fields

- Various Ecliptic latitudes to estimate ZL
- Spitzer & AKARI survey fields, where point sources are well studied

Sup

Ecliptic coordinate

Summary of the CIBER observation targets						
Fields	Time [s]	Altitude[km]	(RA, Dec)	(λ,β)	(<i>l</i> , <i>b</i>)	
SWIRE	122 - 208	204 - 298	(242.75, 55.00)	(207.68, 72.73)	(84.89, 44.62)	
NEP	223 - 292	308 - 329	(270.00, 66.34)	(279.88, 89.31)	(96.13, 29.81)	
Elat-10	319 - 326	326 - 324	(227.00, -2.00)	(233.76, 10.71)	(356.88, 46.08)	
Elat-30	340 - 357	319 - 310	(221.00, 20.00)	(212.82, 35.10)	(23.52, 63.31)	
Bootes-A	372 - 442	301 - 231	(218.48, 34.88)	(200.75, 46.72)	(58.76, 66.79)	
Bootes-B	456 - 523	211 - 99	(217.32, 33.39)	(200.30, 44.94)	(55.44, 68.02)	

Data reduction

- Dark current subtraction & responsivity correction
- Time-dependent component (atmospheric airglow, outgas)
 - Exponential fitting and subtraction
- Unit conversion to the brightness \rightarrow raw spectra

Observed sky brightness

Sky brightness levels are similar to previous observations

Galactic foregrounds: Stars

- Detected stars $(z < 13 \text{mag}) \rightarrow 2$ -sigma clipping, pixel masking
- Below the limiting magnitude \rightarrow integrated model star counts (ISL)
 - Galaxy model : spectral type distribution, number density, extinction

(Wainscoat et al. 1992, Bahcall&Soneila 1980, Cohen 2001)

Calculation of the ISL brightness

ISL spectra: < 30nW/m2/sr (< 10% of sky brightness)

Uncertainty: model uncertainty +/-9% (Cohen 2001, Wainscoat et al. 1992) completeness fitting error

- Diffuse Galactic light (DGL)
 - Dust scattering of ISRF in Vis-NIR
- DGL spectrum
 - ISRF, scattering function & albedo
 - Observations of reflection nebulae
- Intensity
 - From linear correlation with NHI and 100um emission in low density regime

SFD 100um map at the NEP field

Fig. 2.—We display the *R*-band images of (a) MBM 25, (b) MBM 30, (c) MBM 32, (d) MBM 41A, and (e) MBM 41D. The image sizes are $2^{\circ} \times 3^{\circ}$, with north up and east to the left. Reference sky positions are indicated by labels 1, 2, and 3, while the cloud positions at which surface brightness measurements were conducted are labeled IS-10S in each case. Witt et al., ApJ, 679, 497 (2008)

Near-infrared background WS, Austin, May 14-15, 2012

- DGL estimate from 100um flux is very uncertain
- Factor of ~2 difference among previous works in the visible
- Our estimate here : mid point (Mattila 2006) with 50% error

Reference	Conv. Factor (nW/m ² /sr) / (I ₁₀₀ MJy/sr)	Wavelength (um)	(NHI 10 ²⁰ /cm ²)]	100		Mattila 2006 (Interplation SED of DC	scatter + er	nission)	
Mattila 2006	15 (1.5)	0.65 (interpolated)	_f [nW/m ² /sr /	10		from Mat	tila 20	06	
Witt et al. 2008	7 (0.3)	0.63	less M		- •	• •		-	-
Matsuoka et al. 2011	22 (0.6)	0.65	DGL brightr		-				•
Brandt & Draine 2011	12 (2.2)	0.66		1	0.6 0.8 1 Wave	2 length [μm]	3	4	5

DGL spectra:

negligibly small at low cirrus region such as SWIRE and Bootes large comparable to ISL at NEP and Elat fields

Zodiacal light spectrum

Zodiacal light (ZL): scattered sun light by interplanetary dust

2

- ZL spectrum difference of sky spectra (Sky-ISL-DGL) at different ecliptic latitudes, to extract pure ZL removing isotropic background
- **Model-independent**

Result:

- Spectral shape is isotropic
- spectrum \rightarrow This spectral template is usable to predict ZL in any normalized Zl places only by scaling
- Silicate absorption 1st flight result Tsumura et al., ApJ, 2010

ZL subtraction w/ DIRBE model

- COBE/DIRBE ZL model (Kelsall et al. 1998)
- Correlation method: Sky-ISL-DGL (CIBER) vs. ZL model (1.25um)

y-intercept = isotropic background

ZL subtraction w/ DIRBE model

- ZL-model correlated component
 - Spectral shape agrees with the ZL spectral template
 - Intensity is systematically 5% lower due to some gain difference

Model independent ZL subtraction

- SED (Silicate absorption) \rightarrow on-going work with CIBER/LRS
- Fraunhofer line \rightarrow preliminary result with CIBER/NBS

Korngut et al. (poster presentation at this WS)

Total error budget

	Mean intensity [nW/m²/sr]	Error	Error contents (+/-error)
Sky (NEP at 1.25µm)	366	1	Airglow subtraction error Detector noise
ZL	236	11(4) correlationmethod	ZL template error: 3% ZL model error: 1.5% DIRBE calibration: 1.5%
ISL	25	2	Star count model: 9% Completeness fit Slit aperture correction
DGL	19	10	Conversion factor: 50% 100um map accuracy LRS position error
Calibration	-	7	Absolute calibration: 2%
Uncertainty for EBL	DIRBE 20-60	17 (13)	Detectable

Near-infrared background WS, Austin, May 14-15, 2012

For better estimate of DGL

- Self-consistent scaling of the DGL intensity
 - Sky-ZL-ISL(=DGL+EBL) vs. $100\mu m$
 - Conversion factor = 22+/-7, inconsistent with primary used factor = 13
 - Similar to Matsuoka et al. 2011 and Mattila's scale for NHI

Summary

Result:

- CIBER measured absolute sky spectrum in Vis-NIR
- Foreground subtraction is still on-going work
- Estimated uncertainty indicates detectability of EBL

Future:

- More works on the foreground analysis
 - Model independent ZL subtraction
- Success of the 3rd CIBER flight on Mar 22, 2012
 - Confirmation of the 2nd flight result presented here
 - Polarization measurement for ZL estimate

The END

Near-infrared background WS, Austin, May 14-15, 2012

EXZIT : Exo-Zodiacal Infrared Telescope

- Infrared instrument to be onboard Solar-sail spacecraft of JAXA
- Solar-sail mission is to explore Jupiter and Trojan asteroids
- Toward Jupiter orbit at 5AU, observation during the cruising phase
- Absolute spectrum of EBL in Vis-MIR range with no ZL
- Launch ~2020

See poster presentation (Matsuura et al.)

