
<u>Abstract</u>

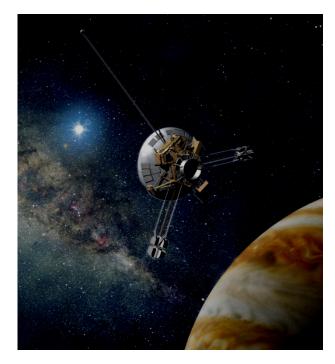
- We have re-analyzed the all-sky imaging data taken by the IPPs on board the Pioneer 10/11 spacecrafts.
- The new constraints on the COB are obtained, which are
- 7.9 ± 4.0 nW m⁻² sr⁻¹ at 0.39 – 0.50 μm,
 7.7 ± 5.8 nW m⁻² sr⁻¹ at 0.60 – 0.72 μm.
 The derived COB is consistent with the integrated brightness of galaxies in the Hubble deep field.

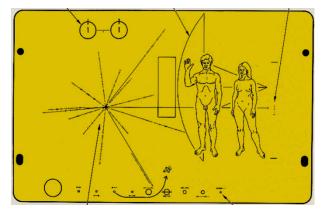
- Cosmic optical background (COB) = Optical component of the extragalactic background light (EBL)
- UV and optical light of all radiation sources in the Universe (↔ integrated brightness of galaxies)

Galactic stars Diffuse Galactic light

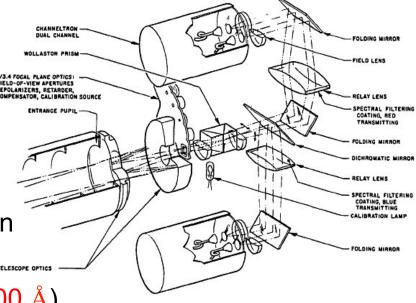
Zodiacal Light

Pioneer 10/11


COB

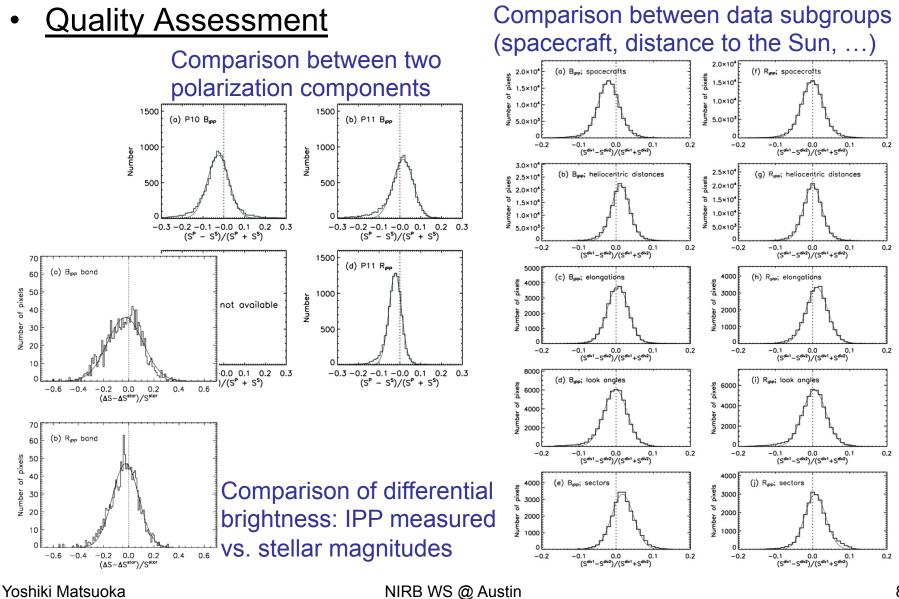

Airglow

. Yoshiki Matsuoka


- NASA's Pioneer 10/11 spacecrafts
- "the first to be sent to the outer solar system and the first to investigate the planet Jupiter, after which followed an escape trajectory from the solar system"
- Launched: May 1972 (Pioneer 10)
 Apr 1973 (Pioneer 11)
- Comm. Stop: Jan 2003 (P10; D = 82 AU) Nov 1995 (P11; D = 45 AU)
- <u>Scientific instruments:</u>

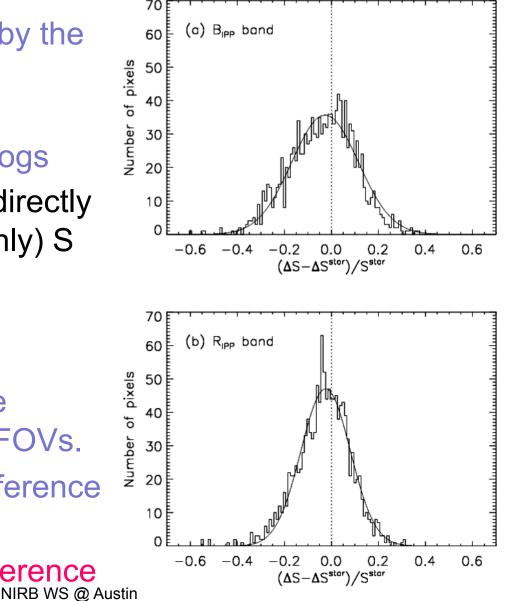
magnetometer; plasma analyzer; charged particle detector; ionizing detector; nonimaging telescopes; sealed pressurized cells of Ar and N gas; UV photometer: IR radiometer; imaging photopolarimeter

- Imaging Photopolarimeter (IPP)
 - 2.5-cm Maksutov telescope
 - Wollaston prism
 - multilayer filters
 - dual-channel Bendix channeltrons
- measures two orthogonal polarization components in the two wave bands (blue; 3900 – 5000 Å, red; 5950 – 7200 Å)
- Instantaneous FOV: 2.29° x 2.29°
- takes 64 exposures per one spacecraft spin (12.5 sec)
 → <u>effective FOV: 2.29° x (2.29° + 5.625° sin L) ~ 10 deg²</u>
- *L*: "look angle" between the IPP pointing and spacecraft spin axis
- 1 data cycle = 10 rolls (8 for sky measurements, 1 for photometric calibration, 1 for dark-current and offset measurement)

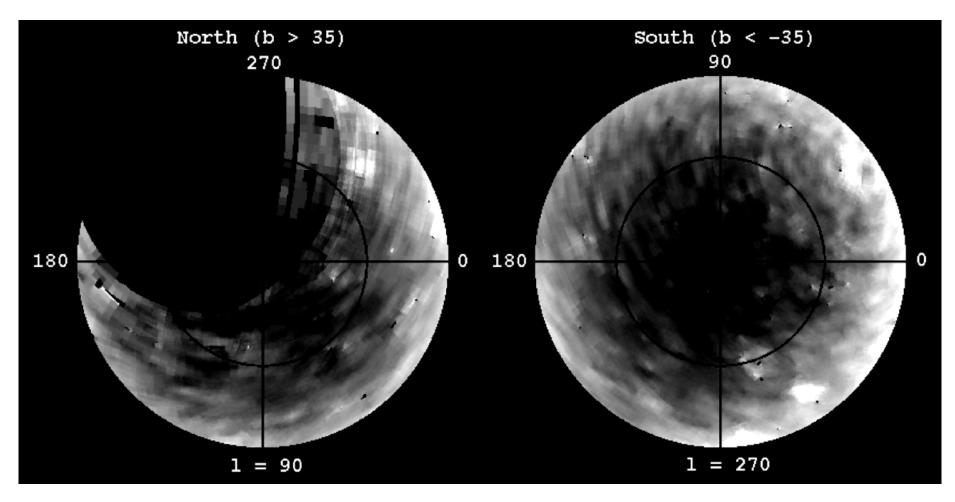

Yoshiki Matsuoka

- ZL and COB measurements by the IPP
- Hanner et al. (1974)

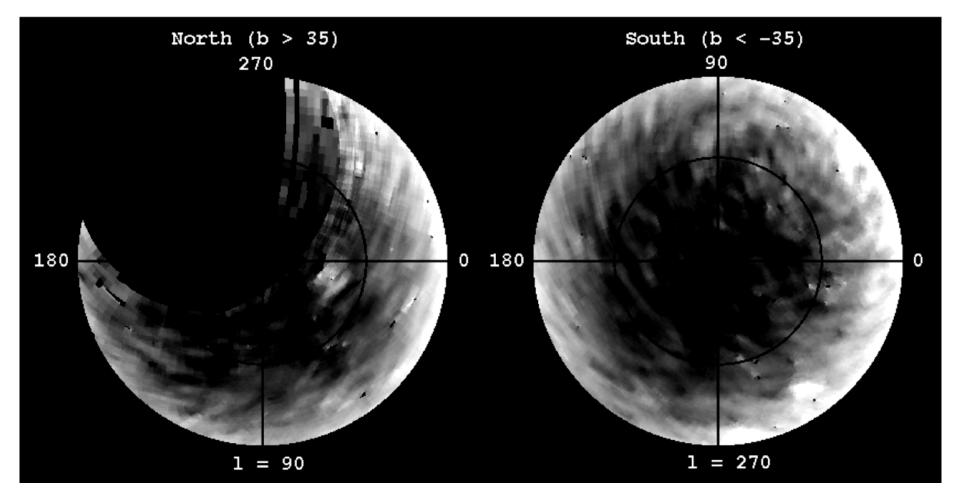
 monitored the sky brightness during the cruise phase of the Pioneer 10 at the heliocentric distances 2.4 – 4.8 AU.
 - ZL @ 2.4 AU < 10% ZL @ 1 AU
 - ZL undetectable @ > 3.3 AU
- Toller (1983)


- Ser Asteroid Batt Merr Merr Merr Merr Merr Nau 20 2.41 2.54 2.94 3.27 3.0 Merr Me
- attempted to detect the COB in the Pioneer 10 IPP data taken at the heliocentric distances > 3.3 AU (i.e., outside the ZL clouds)
- COB < 4.5 x 10⁻⁹ erg s⁻¹ cm⁻² sr⁻¹ Å⁻¹ at 4400 Å
 - ... comparable to the HST results by Bernstein et al. (2002-2007)
- BUT the starlight subtraction is the fatal problem in his analysis.

space craft	date	R (AU)	all #	good Q	corrupt	scatter. sunlight	abnorm. (global)	abnorm. (local)
Pio 10	354/'72	3.26	5696	60 %	25 %	5 %	7 %	3 %
Pio 10	093/'73	3.92	1344	75 %	5 %	0 %	14 %	6 %
Pio 10	149/'73	4.22	5504	61 %	19 %	10 %	5 %	6 %
Pio 10	216/'73	4.54	2816	51 %	3 %	0 %	2 %	45 %
Pio 10	237/'73	4.64	5312	57 %	24 %	5 %	12 %	3 %
Pio 10	279/'73	4.81	5248	57 %	21 %	8 %	10 %	4 %
Pio 10	021/'74	5.08	5504	59 %	27 %	4 %	6 %	4 %
Pio 10	068/'74	5.15	5376	67 %	29 %	1 %	1 %	2 %
Pio 11	057/'74	3.50	4544	73 %	11 %	1 %	10 %	4 %
Pio 11	106/'74	3.81	4672	74 %	5 %	6 %	10 %	4 %
Pio 11	148/'74	4.06	4672	77 %	3 %	9 %	9 %	2 %
Pio 11	178/'74	4.22	4608	73 %	3 %	9 %	11 %	4 %
Pio 11	236/'74	4.51	4544	82 %	10 %	3 %	1 %	5 %
Pio 11	267/'74	4.66	4416	71 %	9 %	3 %	6 %	12 % 7


- S: Brightness measured by the IPP
- S^{star}: Brightness from the independent star catalogs
- S and S^{star} cannot be directly compared because (only) S includes the COB component.

 ∆S: Brightness difference between any two IPP FOVs.
 ∆S^{star}: Corresponding difference from the star catalogs
 .. a few % systematic difference

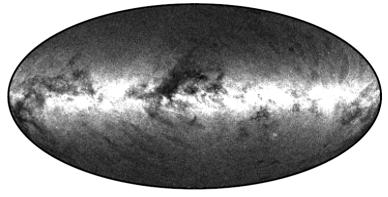


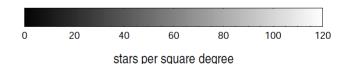
Yoshiki Matsuoka

 IPP Blue-band brightness maps (north/south Galactic hemispheres at |b| > 35°)

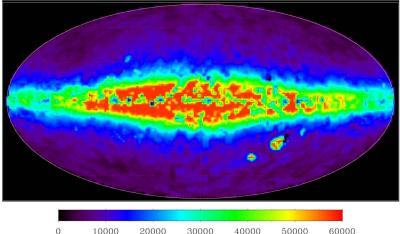
 IPP Red-band brightness map (north/south Galactic hemispheres at |b| > 35°)

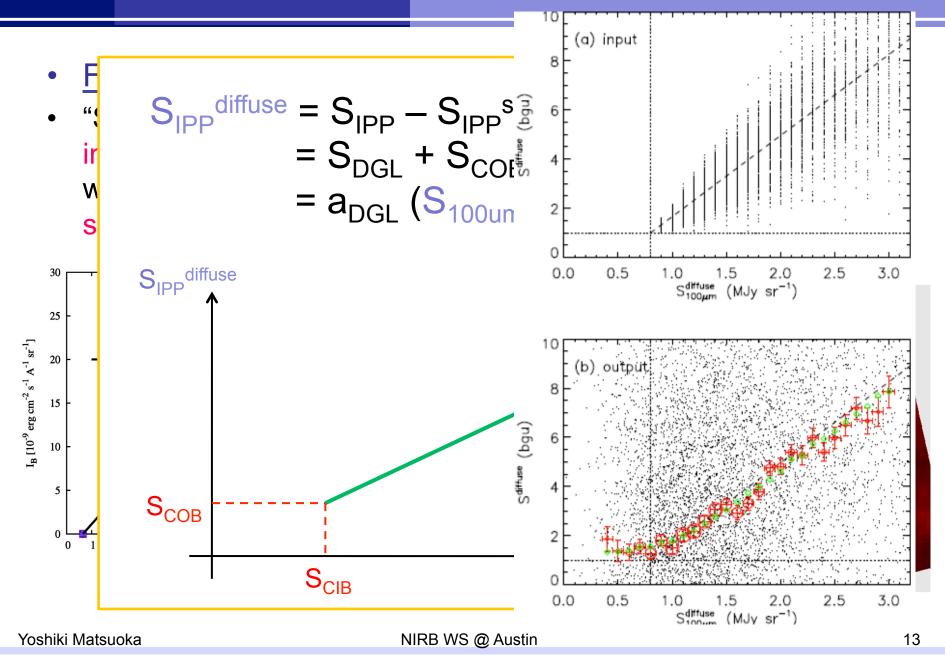
Yoshiki Matsuoka


Contribution of faint stars


- Bright ($m_V < 6.5$) stars in the Yale Bright Star Catalog and the USNO Photoelectric Catalog have already been subtracted.

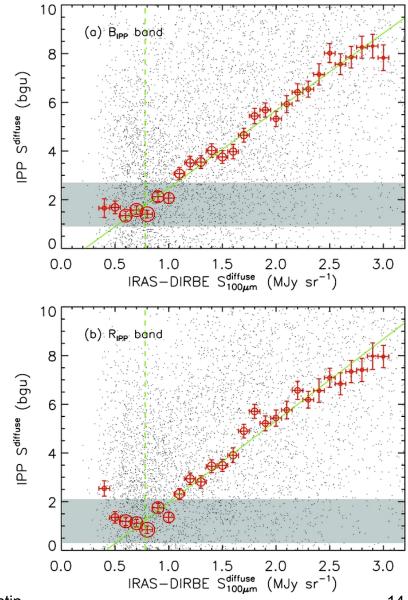
- Fainter stars... all-sky catalogs:

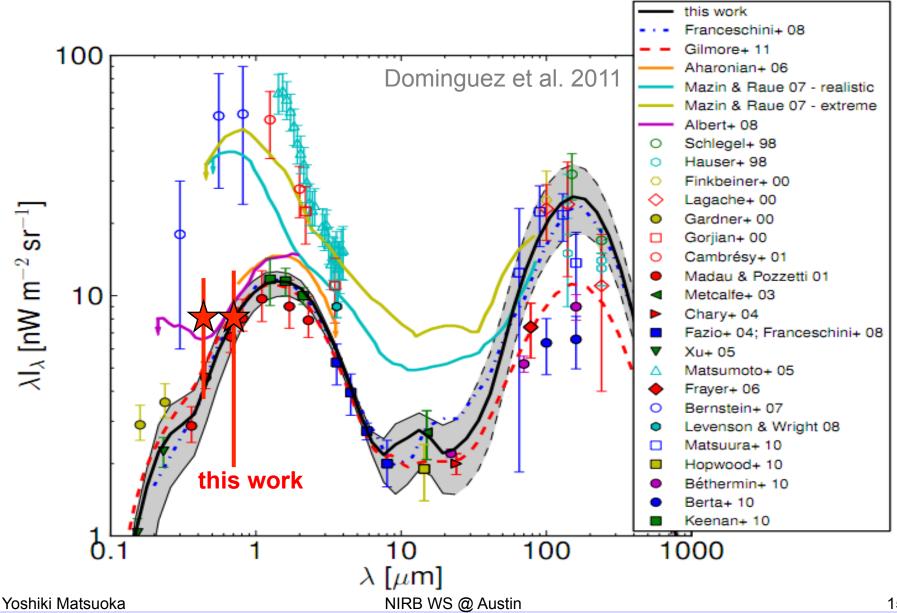

 Tycho-2 Catalog (6 10 mag), GSC-II Catalog (9 20 mag) and Galactic star-count model: TRILEGAL (> 20 mag) are used to derive the starlight contributing to each IPP FOV
- <u>"Diffuse emission map"</u>


Tycho-2 stars (Høg et al. 2000)

GSC-II stars (Lasker et al. 2008)

DGL subtraction


IPP diffuse emission map at $|b| > 35^{\circ}$


IRAS/DIRBE 100 µm emission map (Schelgel et al. 1998)

- Derived DGL/100 um brightness ratios are in good agreement with the previous measurements.
- <u>Residual COB</u>
- 7.9 \pm 4.0 nW m $^{-2}$ sr $^{-1}$ at Blue band
- 7.7 \pm 5.8 nW m $^{\text{-2}}$ sr $^{\text{-1}}$ at Red band

 $(I_{CIB} = 0.78 \pm 0.21 \text{ MJy sr}^{-1}$

at $100\mu m$; Lagache et al. 2000)

<u>Summary</u>

- We have re-analyzed the all-sky imaging data taken by the IPPs on board the Pioneer 10/11 spacecrafts.
- The new constraints on the optical EBL (COB) are obtained, which are
 - $-7.9 \pm 4.0 \text{ nW m}^{-2} \text{ sr}^{-1}$
 - at 0.39 0.50 μm,
 - 7.7 \pm 5.8 nW m^2 sr^1 at 0.60 0.72 $\mu m.$
- The derived COB is consistent with the integrated brightness of galaxies in the Hubble deep field.

Reference: Matsuoka et al. 2011, ApJ, 736, 119

NIRB WS @ Austin