Secondary TeV gamma rays from distant blazars, and a new measurement of extragalactic background light

- Secondary gamma rays from line-of-sight interactions of cosmic rays produced in blazars:
 - spectra robust, show remarkable agreement with data
 - a broad range of EBL models agree with the data
- Extragalactic magnetic fields, time variability, etc.

based on work in collaboration with Felix Aharonian, Shin'ichiro Ando, John Beacom, Warren Essey, Oleg Kalashev, Shigehiro Nagataki, Anton Prosekin

Astropart.Phys. 33 (2010) 81, *ibid.* 35 (2011) 135; Phys. Rev. Lett. 104 (2010) 141102; ApJ 731 (2011) 51; ApJ Lett. 751 (2012) L11; arXiv:1203.3787 see also related work by **Dermer, Finke, Migliori, Murase, Razzaque, Takami**

Even the lowest possible level of EBL requires extremely hard spectra

- Models predict $dN/dE \propto E^{-\Gamma}$, where $\Gamma \geq 1.5$ [Aharonian, 2006; Malkov & Drury, 2001].
- Synchrotron-Self-Compton (SSC) in Klein-Nishina regime forces $\Gamma \ge 1.5$ [Böttcher et al, 2008]
- absorption-corrected spectra are extremely hard, $\Gamma < 1.5,$ for distant blazars

UCLA/IPMU

Cosmic conspiracy

Softening of the spectrum should scale with the redshift

Softening of the spectrum should scale with the redshift but something goes wrong for distant blazars

Proposed "new physics" solutions:

The lack of absorption prompted some exotic solutions:

- photons may convert into some hypothetical axion-like particles that convert back into photons in the galactic magnetic fields [talk by Kohri]
- Lorentz invariance violation for high-velocity particles may prevent pair production [Protheroe et al.]

Is there a more conventional explanation?

AGN produce both UHECR and gamma rays

Secondary gamma rays from cosmic rays along the line of sight?

Gamma-rays produced at the source can attenuate via pair production on EBL for TeV energies: expect attenuation of TeV γ rays.

Protons below GZK cutoff interact with EBL, CMB and produce γ rays via $p\gamma \rightarrow pe^+e^-, p\gamma \rightarrow p\pi^0$: expect regeneration of TeV γ rays Photon backgrounds provide opacity/sink for the former, source for the latter.

What is the scaling of these effects with distance?

Unusual scaling

$$F_{ ext{primary},\gamma}(d) \propto rac{1}{d^2} \exp\{-d/\lambda_\gamma\}$$
 (1)

$$F_{\text{secondary},\gamma}(d) = \frac{p\lambda_{\gamma}}{4\pi d^2} \left[1 - e^{-d/\lambda_{\gamma}} \right] \propto \begin{cases} 1/d, & \text{for } d \ll \lambda_{\gamma}, \\ 1/d^2, & \text{for } d \gg \lambda_{\gamma}. \end{cases}$$
(2)

$$F_{
m secondary,}(d) \propto (F_{
m protons} \times d) \propto rac{1}{d}.$$
 (3)

Unusual scaling

$$F_{ ext{primary},\gamma}(d) \propto rac{1}{d^2} \exp\{-d/\lambda_\gamma\}$$
 (1)

$$F_{\text{secondary},\gamma}(d) = \frac{p\lambda_{\gamma}}{4\pi d^2} \left[1 - e^{-d/\lambda_{\gamma}} \right] \propto \begin{cases} 1/d, & \text{for } d \ll \lambda_{\gamma}, \\ 1/d^2, & \text{for } d \gg \lambda_{\gamma}. \end{cases}$$
(2)

$$F_{
m secondary,}(d) \propto (F_{
m protons} \times d) \propto rac{1}{d}.$$
 (3)

For distant sources, secondary photons and neutrinos win

Unusual scaling

$$F_{ ext{primary},\gamma}(d) \propto rac{1}{d^2} \exp\{-d/\lambda_\gamma\}$$
 (1)

$$F_{\text{secondary},\gamma}(d) = \frac{p\lambda_{\gamma}}{4\pi d^2} \left[1 - e^{-d/\lambda_{\gamma}} \right] \propto \begin{cases} 1/d, & \text{for } d \ll \lambda_{\gamma}, \\ 1/d^2, & \text{for } d \gg \lambda_{\gamma}. \end{cases}$$
(2)

$$F_{
m secondary,}(d) \propto (F_{
m protons} \times d) \propto rac{1}{d}.$$
 (3)

For distant sources, secondary photons and neutrinos win

Gamma-ray observations of distant blazars: 1ES 0229+200 (z = 0.14) and 3C66A (z = 0.44)

A one parameter fit, 3C66A

(parameter = power emitted in CR, subject to constraints)

[Essey, AK, Astropart Phys. 33, 81 (2010)]

Secondary photons and neutrinos from 1ES0229+200 (z = 0.14)

[Essey, Kalashev, AK, Beacom, PRL 104, 141102 (2010)]

Cosmic conspiracy resolved: robust spectral shapes

"Low" EBL (left), "high" EBL (right)

[Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

"Low" EBL (left), "high" EBL (right)

[Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

UCLA/IPMU

"Low" EBL (left), "high" EBL (right)

[Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

Lower limits on UHECR and jet powers of TeV blazars

[Razzaque, Dermer, Finke, ApJ, 745, 196 (2012)]

Spectral change reflects the transition from primary to secondary gamma rays

 $\delta\Gamma = \Gamma_{\rm GeV} - \Gamma_{\rm TeV}$ [Essey, AK, ApJ Letter, 751, L11 (2012)]

Erosion of time variability for $E>1~{\rm TeV},\,z>0.15$

Crucial test of the above explanation is the prediction of a slow erosion of time variability for $E>1~{
m TeV},~z>0.15$.

Current data: variability below TeV for distant blazars, above TeV for nearby blazars.

Prediction: stochastic *pedestal* emerges at high energy, high redshifts, for distant blazars above which some flares may rise

Time structure details: [Prosekin, Essey, AK, Aharonian, arXiv:1203.3787]

EBL models

Once the contribution from cosmic rays is included, the spectra are not very sensitive to the level of EBL.

Models considered:

"High" EBL: Stecker et al. (2006) ApJ, 648, 774

Models between low and high: Salamon & Stecker 1998; Kneiske et al. 2002, 2004; Stecker et al. 2007; Franceschini et al. 2008; Horiuchi et al. 2009; Primack et al. 2009; Gilmore et al. 2009; Razzaque et al. 2009; Finke et al. 2010.

"Low" EBL: Shaped as "high", but at the level of 40% lower.

The range between "high" and "low" encompasses all models.

"Low" EBL vs "high" EBL

Source	Redshift	EBL Model	L_p , erg/s	$L_{p,\mathrm{iso}}$, erg/s	χ^2	DOF
1ES0229+200	0.14	Low	1.3×10^{43}	$4.9 imes 10^{45}$	6.4	7
1ES0229+200	0.14	High	$3.1 imes 10^{43}$	$1.1 imes 10^{46}$	1.8	7
1ES0347-121	0.188	Low	$2.7 imes 10^{43}$	$1.0 imes 10^{46}$	16.1	6
1ES0347-121	0.188	High	$5.2 imes 10^{43}$	$1.9 imes 10^{46}$	3.4	6
1ES1101-232	0.186	Low	$3.0 imes 10^{43}$	$1.1 imes 10^{46}$	16.1	9
1ES1101-232	0.186	High	$6.3 imes 10^{43}$	$2.3 imes10^{46}$	4.9	9

Here we have assumed $\theta_{jet} = 6^{\circ}$ (and $E_{max} = 10^{11}$ GeV, $\alpha = 2$.) [Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

EGMFs: spectra imply *femtogauss fields*

Left: EBL models. Right: Spectra for $B = 10^{-18}$ G (upper line), $B = 10^{-15}$ G (middle line), and $B = 10^{-13}$ G Spectral fits imply EGMF in the range of $\sim 10^{-15}$ G. [Essey, Ando, AK]

UCLA/IPMU

Spectra: $B \sim 10^{-15}$ Gauss

For line-of-sight interactions to explain the point sources, the EGMFs must be in the range:

$1 \times 10^{-17} \text{ G} < B < 3 \times 10^{-14} \text{ G}$

- AGN produce both cosmic rays and gamma rays ⇒ secondary gamma rays are produced in line-of-sight interactions of cosmic rays
- unusual scaling of sources with distance ⇒ secondary gamma rays dominate the signals of distant sources
- inclusion of cosmic-ray contribution brings the blazar spectra in agreement with observations
- there is no tension between a measurement based on gamma rays and those based on direct optical/IR observations