The Sources of CIB Fluctuations: What They May Be and What They Are Not

Kari Helgason Sasha Kashlinsky

Near-IR Background Workshop Austin, TX May 15, 2012

- 1. The amplitude of the fluctuations we measured in Spitzer IRAC data cannot be accounted for by the low-luminosity end of the distribution of "ordinary"/known galaxies (Helgason et al 2012 and see later).
- 2. There are no correlations between the clustering components of our CIB maps and ACS data out to 0.9 mic (KAMM4).
- 3. The clustering pattern of the fluctuations is inconsistent with that of the galaxy populations at recent times, and is consistent with the LCDM-distributed sources at high z (KAMM4).
- 4. Colors of the fluctuations from 2 to 4.5 mic are consistent with high-z very hot sources (Matsumoto et al 2011).
- 5. Angular spectrum of the fluctuations has now been measured to ~ 1 deg including the cross-power between 3.6 and 4.5 mic. The results at both IRAC channels are consistent with the sources being coeval and distributed a'la high-z LCDM model. Low(er) z known sources just would not fit the data provided we live in the LCDM Universe with the galaxies distributed from known counts and other data.

So, the Occam's razor way to interpret the observational data 1-5 is in terms of high-z populations (my personal opinion - based on the above evidence).

What are the populations producing the CIB fluctuations if at high z?

Ly-break being at > 0.9 mic today requires z > 7-8, so the time available to produce the CIB:

This requires comoving luminosity density at $\sim 0.6-0.8[(1+z)/6]\mu$ m:

$$L_{*} \approx \frac{4\pi}{c} F_{CIB} \left(\Delta t\right)^{-1} (1+z) \approx 7 \times 10^{8} L_{Sun} Mpc^{-3} \frac{1Gyr}{\Delta t} \frac{1+z}{6} \frac{F_{CIB}}{nW/m^{2}/sr}$$

Or in terms of density in *'s

$$\Omega_* = 5 \times 10^{-3} \frac{F_{CIB}}{nW/m^2/sr} \frac{\Gamma}{\Gamma_{Sun}} (\frac{1Gyr}{\Delta t}) \frac{1+z}{6}$$
(Today $\Omega_* \sim 2x10^{-3}$)

This corresponds to $\Gamma = M/L << (M/L)_{SUN}$ in order to reproduce reasonable Ω_* :

This means that these sources had to have very large L/M – may be P3 stars, but also may be BHs as well (or have an admixture of less massive *'s).

The CIB fluxes contributed by them would be around 1 nW/m²/sr at 3.6/4.5 micK. Helgason & A. Kashlinsky (GSFC)CIB and early populations - interpretations2012/Austin

Nature of the new populations

- The signal is produced by populations with only low shot noise ($P_{sn} \sim 30-50$ nJy nW/m²/sr) and significant clustering component ($\delta F \sim 0.05-0.1$ nW/m²/sr)
- If at high z clustering component implies net $F_{CR} > ~ 1 \text{ nW/m}^2/\text{sr}$
- If at low z, sources would have to be very faint/small and cluster very differently from normal galaxies. Such populations have never been observed.
- Either way we are talking about new populations.
- These sources would have individual flux $S \sim P_{N}/F_{CR} < 10-30$ nJy, or $m_{AR} > 28-30$
- The surface density of these new populations would be $\sim P_{SN}/S^2 \sim a$ few arcsec²
- They would be within confusion noise and care must be taken when assembling images not to filter them out (no median filtering).

Reconstructing the Near-IR Background Fluctuations from Known Galaxy Populations Using Measured Luminosity Functions

Kari Helgason, Massimo Ricotti, Sasha Kashlinsky

Probing the redshift cone

Luminosity Functions

Reference	Rest-frame band	$\operatorname{Redshift}_{z}$	Sample	Selection $m_{iim}(AB)$	Survey Catalog / Field	
Arnouts et al. (2005)	1500Å	0.2-1.2	1039	NUV<24.5	GALEX/VVDS	
Hillouis et al. (2000)	100011	1.75-3.4	1005	F450&F606<27	HDF	
Wyder et al. (2005)	NUV.FUV	0.055	896.1124	$m_{UV} < 20$	GALEX/2dF	
Oesch et al. (2010)	1500Å	0.5-2.5	284-403	<26	HST ERS	
Oesch et al. (2012)	1500Å	~ 8	70	$\stackrel{\sim}{H<} 27.5$	CANDLES/HUDF09/ERS	
Reddy et al. (2008)	1700\AA	1.9 - 3.4	~ 15.000	R < 25.5	a	
Yoshida et al. (2006)	1500\AA	~ 4.5	3808,539	\$26-27	Subaru Deep Field	
McLure et al. (2009)	1500Å	~ 5.6	~ 1500	$\widetilde{z'} \leq 26$	SXDS/UKIDSS	
Ouchi et al. (2009)	1500Å	7	22	\$26	SDF/GOODS-N	
Bouwens et al. (2007)	$1600 \text{\AA}, 1350 \text{\AA}$	$\sim 4.5.6$	4671,1416,627	\$29	HUDF/GOODS	
Bouwens et al. (2011)	$1600 \text{\AA}, 1750 \text{\AA}$	~ 7.8	73,59	\$26-29.4	HUDF09	
Gabasch et al. (2004)	u'g'	0.45 - 5	5558	$\tilde{I} < 26.8$	FORS Deep Field	
Baldry et al. (2005)	$^{0.1}u$	< 0.3	43223	u < 20.5	SDSS	
Faber et al. (2007)	B	0.2 - 1.2	~ 34000	$R \lesssim 24$	DEEP2/COMBO-17	
Norberg et al. (2002)	b_j	< 0.2	110500	<19.45	2dFGRS	
Blanton et al. (2003b)	$^{0.1}ugriz$	0.1	147986	< 16.5 - 18.3	SDSS	
Montero-Dorta & Prada (2009)	$^{0.1}ugriz$	≤ 0.2	947053	<17-19	SDSS	
Loveday et al. (2012)	$^{0.1}ugriz$	0.002 - 0.5	8647-12860	r < 19.8	GAMA	
Ilbert et al. (2005)	UBVRI	0.05 - 2.0	11034	I < 24	VIMOS-VLT Deep Survey	
Gabasch et al. (2006)	i'z'r'	0.45 - 3.8	5558	I < 26.8	FDF	$\phi(L)dL = \phi^* \qquad \qquad$
Marchesini et al. (2007)	BVR	2.0 - 3.5	989	$K_s \lesssim 25$	MUSYC/FIRES/GOODS/EIS	
Marchesini et al. (2012)	V	0.4 - 4.0	19403	$H{<}27.8, K{<}25.6$	a	
Hill et al. (2010)	ugriz	0.0033 - 0.1	2437 - 3267	< 18 - 21	MGC/UKIDSS/SDSS	····
	YJHK		1589 - 1798	< 17.5 - 18		
Dahlen et al. (2005)	UBR	0.1-2	18381	R < 24.5	GOODS-HST/CTIO/ESO	Schechter fit
	J	0.1-1	2768	$K_s < 23.2$		Petro F
Jones et al. (2006)	$b_j r_f$	< 0.2	138226	$b_j r_f < 15.6, 16.8$	6dFGS/2MASS	
	JHK			JHK < 14.7	/SuperCOSMOS	\widehat{z}^{-2}
Bell et al. (2003)	ugriz	< 0.1	22679	r < 17.5	SDSS	
	K		6282	K < 15.5	2MASS	
Kashikawa et al. (2003)	BK'	0.6 - 3.5	439	$K' \! < \! 24$	Subaru Deep Survey	
Stefanon & Marchesini (2011)	JH	1.5 - 3.5	3496	$K_s < 22.7 - 25.5$	MUSYC/FIRES/FIREWORKS	
Pozzetti et al. (2003)	JK_s	0.2 - 1.3	489	$K_s < 20$	K20 Survey	ž, gri
Feulner et al. (2003)	JK'	0.1-0.6	500	K' < 19.4-20.9	MUNICS	ĕ . ∦
Eke et al. (2005)	JK_s	0.01-0.12	16922,15664	$JK_s \lesssim 15.5$	2dFGRS/2MASS	
Cole et al. (2001)	JK_s	0.005-0.2	7081,5683	$JK_s \lesssim 15.5$	2dFGRS/2MASS	$M = 5 \log_{2} h = -21 13 \pm 0.06$
Smith et al. (2009)	K	0.01-0.3	40111	K < 17.9, r < 17.6	UKIDSS-LAS/SDSS	$\alpha = -1.17 \pm 0.03$
Saracco et al. (2006)	K _s	0.001-4	285	Ks < 24.9	HDFS/FIRES	_8 ¹ . M* 1
Kochanek et al. (2001)	K _s	0.003-0.03	4192	$K_{20} < 13.35$	2MASS/CIA2/UZC	
Huang et al. (2003)	K	0.001-0.57	1056	K < 15	2dF/AAO	-24 -22 -20 -18
Arnouts et al. (2007)	K	0.2-2	21200	$m_{3.6mic} < 21.5$	JUKIDSS /OFUTI S	M _{0.11} -5log ₁₀ h
Circonale et el (2010)	V	0.2.4	- 50000	V < 92	/ UKIDSS/UFHILS	
Babbedge et al. (2010)		0.2-4	~50000	$K \le 20$	SWIRE /INT WES	
Dai et al. (2009)	$L_{2.6\mu m} M_{4.5\mu m}$	0.01-0.6	4905.5847	LM < 19, I < 20.4	IBAC-SS/AGES	

233 Measured Luminosity Functions

Helgason, Ricotti & Kashlinsky 2012

Populating and projecting the lightcones

$$\Phi_i(M|z_i) = 0.4 \ln (10) \phi^*(z_i) \left(10^{0.4(M \star (z_i) - M)} \right)^{\alpha(z_i) + 1} \\ \times \exp\left(-10^{0.4(M^*(z_i) - M)}\right)$$

Distance modulus Evolution

$$m = M + DM(z) + K(z) + E(z) + A_b(l,b)$$

k-correction Extinction

Number Counts

$$N(m) = \int \Phi(m|z) \frac{dV}{dz d\Omega} dz$$

Flux production

 $\frac{d\mathcal{F}}{dz} = \int_{m_{v}}^{\infty} dm f(m) \frac{dN(m|z)}{dz}$

Number mag⁻¹ deg⁻²

Flux & Shot Noise

1.4°

Guo et al. 2011 Henriques et al. 2012

Springel et al. 2005

Helgason, Ricotti & Kashlinsky 2012

Summary

- It is possible to empirically reconstruct the emission history of the Universe from known galaxy populations out to z~3-5 from UV to NIR
- This reconstruction matches both observed counts and integrated background light
- <u>CIB fluctuations from known galaxy populations are unable to account</u> for the measured power by factors >10
- <u>There is strong evidence for *new* populations in the CIB fluctuations</u>
- There are strong arguments for a high-z origin of the detected CIB fluctuation excess
- If so, these populations had to have high L/M, but the measurements cannot differentiate between the stellar emission and BH accretion
- If the sources lie at low(er) z, they would have to be new very faint populations evolving independently from normal galaxies AND remain undetected in deep ACS images