Reionization signatures in gamma-ray spectra

Rudy Gilmore SISSA UC Santa Cruz

"Near-IR Background and the Epoch of Reionization" AT&T Conference Center May 15, 2012

Tuesday, May 15, 2012

Outline

✓ Review: Modeling the evolving extragalactic background

✓ Gamma-ray constraints on the EBL

✓ Limits on pop-III star formation with high-z Fermi sources

Part I: The Extra-Galactic Background Light (EBL)

Photon population created by cosmological structure formation (stars+AGN +others?)

- can include unknown sources, or those too faint to see

Determining the EBL from observations is difficult:

★ Direct photometry measurements must contend with difficult foreground subtraction and calibration issues!

★ Number counts of resolvable sources available at many wavelengths, but may miss faint source populations

 \star In general, sophisticated modeling is required to treat evolving galaxy population

Modeling of the galaxy population

Observationally-based models - Use evolution that is either inferred or directly observed in some astrophysical parameter(s) as a basis for model

Kneiske et al. 2004;

Finke et al. 2010 - models based on inferred star formation rate density, stellar synthesis models, dust reradiation

Dominguez et al. 2011 - based on K-band LFs evolution plus galaxy population from analysis of >5000 AEGIS SEDs

<u>Backwards evolution</u> - evolve local galaxy population to higher redshift according to assumed prescription

Stecker et al. 2006 - based on power law evolution of existing galaxy pop.

Franceschini et al. 2008 - more sophisticated model based on measured LFs, separate treatment of optical and IR, and different galaxy population.

Forward evolution - compute growth of galaxies forward in time, begin from cosmological initial conditions and accounting for relevant physical processes that drive growth

Primack et al. 1999, 2001, 2005; Gilmore et al. 2009; Somerville 2012/Gilmore 2012 - trace galaxy evolution from high redshift, based on LCDM cosmology, allow comparison with a wide range of data

Part 2: Absorption of Gamma Rays by EBL

 Gamma-ray attenuation via e⁺e⁻ pair production provides a link between galaxy history and high energy astrophysics.

• Opacity based on integrated EBL flux, tends to increase with energy:

• This leads to softening and cutoff in gamma ray spectra of distant extragalactic sources (blazars and GRBs), as well as gamma-ray horizon.

Some of our strongest upper limits on the EBL are from gamma-ray constraints

at z < 0.5 constrain IR background

Gamma-ray optical depth vs energy at several redshifts

0.001

0.1

Attenuation (exp[-\tau]) 6 6

Cosmological "Attenuation Edge"

Contours of constant tau in redshift and observed energy

Optical/UV light produces cutoffs in GR spectra in the 10-100 GeV range above redshift 1

High redshift gamma-ray observations can potentially test differences between models

Results from Fermi first-year data for EBL limits from AGN and GRBs (Abdo et al. 2010, ArXiv 1005.0996)

Redshift and observed energy of highest-energy photons

- Lines show opacity of 3T

First-year Fermi data disfavors only the highest EBL models
GRBs key source at high redshift?
GRBs avoid background problems of long-term AGN observations and

 GRBs avoid background problems of long-term AGN observations, and LAT bursts generally have harder spectra than most FSRQs

Part 3: Limits on a Pop-III contribution to the EBL

• Can gamma-ray observations limit a reionization-era component in the EBL ('rEBL')?

 Several authors suggest that pop-III stars could contribute substantially to near-IR EBL (e.g., Kashlinsky 2004; Cooray 2004; Matsumoto 2005, 2010)

• Observations of TeV blazars can limit a large contribution (Raue+09)

Raue, Kneiske, & Mazin 2009:

Considered EBL signature from high-z stars

• Range of upper limits based on restriction of reionization EBL contribution at 2µm to $\leq 5 \text{ nW/m}^2/\text{sr}$

Variation in metallicity and SFR density redshift evolution

Part 3: Limits on a Pop-III contribution to the EBL

• Can gamma-ray observations limit a reionization-era component in the EBL ('rEBL')?

 Several authors suggest that pop-III stars could contribute substantially to near-IR EBL (e.g., Kashlinsky 2004; Cooray 2004; Matsumoto 2005, 2010)

• Observations of TeV blazars can limit a large contribution (Raue+09)

 Abdo+10 Fermi EBL limits consider high-z AGN and GRBs
 However, none of the models discussed included a specific component from pop-III stars

Part 3: Limits on a Pop-III contribution to the EBL

• Can gamma-ray observations limit a reionization-era component in the EBL ('rEBL')?

 Several authors suggest that pop-III stars could contribute substantially to near-IR EBL (e.g., Kashlinsky 2004; Cooray 2004; Matsumoto 2005, 2010)

• Observations of TeV blazars can limit a large contribution (Raue+09)

 Abdo+10 Fermi EBL limits consider high-z AGN and GRBs
 However, none of the models discussed included a specific component from pop-III stars Gilmore 2012, MNRAS 420, 800 ArXiv:1109.0592

Attenuation in high-z GeV spectra have advantage of isolating a Population-III contribution

Limits on local background originating from high-z:

Optical thinness requirement puts upper limit on the EBL contribution from high redshift.
Highest energy photons:

GRB 080916C (z=4.35): 13.6 GeV
PKS 1502+106 (z=1.84): 49.2 GeV

In general, highest redshift sources are most constraining.
Thermal rEBL spectra assumed

• Upper bounds on the contribution to the EBL can be translated to upper bounds on SFRD by assuming a spectral model for pop-III contribution

We develop spectra templates for pop-III emission following Santos+02 and Fernandez & Komatsu 06, and using 2 possible IMFs (Salpeter and the top-heavy Larson (1998) IMF)

Santos, Bromm & Kamionkowski (2002)

• Subdominant contributions to the EBL from high redshift can dominate attenuation profile for high-z gamma-ray sources.

We develop spectra templates for pop-III emission following Santos+02 and Fernandez & Komatsu 06, and using 2 possible IMFs (Salpeter and the top-heavy Larson (1998) IMF)

• Upper bounds on the contribution to the EBL can be translated to upper bounds on SFRD by assuming a spectral model for pop-III contribution

We develop spectra templates for pop-III emission following Santos+02 and Fernandez & Komatsu 06, and using 2 possible IMFs (Salpeter and the top-heavy Larson (1998) IMF)

• SFRD limit set using 'highest energy photon' method of Abdo+10, and gamma-rays observed from 5 Fermi LAT sources

(GRB080916C, PKS 0227-369, PKS 1502+106, PKS 0805-07, J1016+0513)

Future prospects for these types of limits

- Gamma rays at higher energy and/or higher redshift could improve our constraints on high-z SF
- High-z GRB would be the most likely source of these GRs
- Composite limits from several sources can be even stronger than shown below

Conclusions

Recent models of the EBL (Somerville 2012, Franceschini 2008, Finke 2010, Dominguez 2011) generally agree on contribution of galactic sources at low-z

 …However, these models cannot rule out possibility of large reionization-era contribution to the EBL

Observations of the highest redshift Fermi sources can put upper limits on pop-III contribution to the EBL

Corresponding limits on pop-III star-formation can rule out a large upturn in the global SFRD in the late stages of reionization

Future observations could strengthen these results

most helpful sources are high-z GRBs observed with Fermi

 or CTA; see Gilmore+2012 (ArXiv:1201.0010) and Kukawa+2012 (ArXiv:1112.5940)

Tuesday, May 15, 2012

30day, May 10, 2012