Limits on γ-ray Lines from Unitarity

Can Kılıç, UT Austin

in collaboration with

K. Abazajian, P. Agrawal, Z. Chacko
Beacon in the Dark

- Indirect detection at astrophysical distances: gammas are best.
- Direct annihilation gives monoenergetic photons. Rare.
- Bremsstrahlung and hadronic decays give continuum.
- Potential check on anomalies in other indirect detection channels.

Can Kılıç, UT Austin
Minimum strength for line with respect to continuum?
Line Bound From Unitarity

- Strength of line is related to the primary annihilation mode.
- No model independent bound for the full amplitude.
- Imaginary part of loop is much more robust.
- Ratio to continuum also model-independent.
Unitarity

- S matrix is unitary
 \[S^\dagger S = 1 \]
- S=1+iT
- put in intermediate states
 \[-i\langle f|(T-T^\dagger)|i\rangle = \sum_m \langle f|T^\dagger|m\rangle\langle m|T|i\rangle \]
- CP
 \[-2i\text{Im}\langle f|T|i\rangle = \sum_m \langle f|T^\dagger|m\rangle\langle m|T|i\rangle \]
- single channel
 \[4|\text{Im}\langle f|T|i\rangle|^2 = |\langle f|T^\dagger|m\rangle|^2 |\langle m|T|i\rangle|^2 \]
Methods

• Use $|J,M;L,S>$ basis.
• Map annihilation into decay process.
• Calculate imaginary part of loop amplitude.
• Bound is

$$\frac{\sigma_{IM}}{\sigma} = \frac{\Gamma_{Im}}{\Gamma}$$

• Can also translate to line / continuum.
Case of Spin-0 Dark Matter

J=0, CP even

chirally suppressed, heavy preferred
CP forces S=1, L=1

spin 1/2

CP allows S=2, L=2
as well as S=0, L=0
latter preferred in non-relativistic limit
Case of Spin-1/2 (Majorana) DM

Spin 1/2

antisymmetry forces S=0, J=0, CP odd

Heavy preferred CP forces S=0, L=0

Spin 1

CP allows S=1, L=1 only

Can Kılıç, UT Austin
Case of Spin-1/2 (Dirac) DM

J can be 0, 1

take conservative case?

Landau-Yang theorem

Can Kılıç, UT Austin
Case of Spin-1 (real) DM

- Spin 1/2
 - Symmetry forces $J=0, 2$
 - $J=0$ already covered
 - Light is now OK.
 - CP forces $S=1$
 - L can be \{1, 2, 3\}
- Spin 1
 - $S=0, L=2$ or
 - $S=2, L=\{0, 1, 2, 3, 4\}$

Bound only in kinematic limits

Can Kılıç, UT Austin
<table>
<thead>
<tr>
<th>Dark Matter</th>
<th>Initial spin</th>
<th>Annihilation Channel</th>
<th>Mode</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td>$J = 0$</td>
<td>WW</td>
<td>$L = 0, S = 0$</td>
<td>In NR / UR limits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$L = 2, S = 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f \bar{f}$</td>
<td>$L = 1, S = 1$</td>
<td>✓</td>
</tr>
<tr>
<td>Majorana Fermion</td>
<td>$J = 0$</td>
<td>WW</td>
<td>$L = 1, S = 1$</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f \bar{f}$</td>
<td>$L = 0, S = 0$</td>
<td>✓</td>
</tr>
<tr>
<td>Dirac Fermion</td>
<td>$J = 0$</td>
<td>WW</td>
<td>$L = 1, S = 1$</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f \bar{f}$</td>
<td>$L = 0, S = 0$</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>$J = 1$</td>
<td></td>
<td></td>
<td>Forbidden</td>
</tr>
<tr>
<td>Real Vector Boson</td>
<td>$J = 0$</td>
<td>WW</td>
<td>$L = 0, S = 0$</td>
<td>In NR / UR limits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$L = 2, S = 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f \bar{f}$</td>
<td>$L = 0, S = 0$</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>$J = 2$</td>
<td>WW</td>
<td>$L = 2, S = 0$</td>
<td>In NR limit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$L = {0, 1, 2, 3, 4}, S = 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f \bar{f}$</td>
<td>$L = {1, 2, 3}, S = 1$</td>
<td>In NR / UR limits.</td>
</tr>
</tbody>
</table>
Results – Scalar DM

Can be represented as decay of heavy scalar.

To fermions:

$$\mathcal{L}_{int} = \lambda \bar{f} f \phi$$

$$\frac{\Gamma_{\text{Im}}(\phi \to \gamma \gamma)}{\Gamma(\phi \to f \bar{f})} = \frac{N_c Q^4 e^4 m_f^2}{32\pi^2 m_\chi^2} \beta \left[\tanh^{-1} \beta \right]^2$$

To W’s:

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \phi \text{Tr} [F_{\mu\nu} F^{\mu\nu}]$$

$$\frac{\Gamma_{\text{Im}}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} = \frac{3 e^4}{64\pi^2 \beta} \quad \text{(NR)}$$

Can Kılıç, UT Austin
Results – Scalar DM

To W’s, ultra-relativistic regime

Ultra-relativistic: Use equivalence theorem to separate transverse and longitudinal modes.

• Longitudinal state is unique.

\[\mathcal{L}_{\text{int}} = \alpha \phi \, H^\dagger H \]

\[\frac{\Gamma_{\text{Im}}(\phi \rightarrow \gamma \gamma)}{\Gamma(\phi \rightarrow WW)} \sim \frac{e^4}{16\pi^2} \frac{m_W^4}{m_\chi^4} \left[\log \left(\frac{4m_\chi^2}{m_W^2} \right) \right]^2 \]

• Transverse state as well, once CP is taken into account.

\[\mathcal{L}_{\text{int}} = \frac{1}{\Lambda} \phi \, \text{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right] \]

\[\frac{\Gamma_{\text{Im}}(\phi \rightarrow \gamma \gamma)}{\Gamma(\phi \rightarrow WW)} = \frac{e^4}{32\pi^2} \left[\log \left(\frac{4m_\chi^2}{m_W^2} \right) \right]^2 \]

• Combine:

\[\frac{\Gamma_{\text{Im}}(\phi \rightarrow \gamma \gamma)}{\Gamma(\phi \rightarrow WW)} = F_T \frac{e^4}{32\pi^2} \left[\log \left(\frac{4m_\chi^2}{m_W^2} \right) \right]^2 \]

Can Kılıç, UT Austin
Results – Majorana Fermion DM

Can be represented as decay of heavy pseudoscalar.

To fermions:

\[
L_{\text{int}} = i \lambda \bar{f} \gamma^5 f \varphi
\]

\[
\frac{\Gamma_{\text{Im}}(\varphi \rightarrow \gamma\gamma)}{\Gamma(\varphi \rightarrow f\bar{f})} = \frac{N_c Q^4 e^4 m_f^2}{32\pi^2 m_\chi^2} \frac{1}{\beta} [\tanh^{-1} \beta]^2
\]

To W’s:

\[
L_{\text{int}} = \frac{1}{\Lambda} \varphi \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu})
\]

\[
\frac{\Gamma_{\text{Im}}(\varphi \rightarrow \gamma\gamma)}{\Gamma(\varphi \rightarrow WW)} = \frac{e^4}{8\pi^2 \beta} [\tanh^{-1} \beta]^2
\]

both cases consistent with known SUSY results.
Results – Real Vector DM

J=0 case already covered, consider J=2
(more conservative bound applies)
Can be represented as decay of heavy spin-2 particle

To fermions: Non-relativistic limit. Single species assumed.

\[\mathcal{L}_{int} = -\frac{\kappa}{2} h^{\mu\nu} \bar{f} i\gamma_\mu \partial_\nu f \]

\[\frac{\Gamma_{\text{Im}}(h \rightarrow \gamma\gamma)}{\Gamma(h \rightarrow f\bar{f})} \bigg|_{J=2} = \frac{N_c Q^4 e^4 \beta^3}{120\pi^2} \]

p-wave, weak limit
Results – Real Vector DM

J=0 case already covered, consider J=2
(more conservative bound applies)
Can be represented as decay of heavy spin-2 particle

To fermions: Ultra-relativistic limit.
If there are multiple final states and no phases, then bound still applies.

\[\mathcal{L}_{\text{int}} = -\frac{\kappa}{2} h^{\mu\nu} \bar{f} i\sigma_\mu \partial_\nu f \]

\[\frac{\Gamma_{\text{Im}}(h \rightarrow \gamma\gamma)}{\Gamma(h \rightarrow f\bar{f})} \bigg|_{J=2} = \frac{N_f N_c Q^4 e^4}{144\pi^2} \]

J=0 suppressed. Bound applies.
Results – Real Vector DM

J=0 case already covered, consider J=2
(more conservative bound applies)
Can be represented as decay of heavy spin-2 particle

To W’s : Non-relativistic limit.

\[\mathcal{L}_{\text{int}} = \frac{\kappa}{2} h^{\mu\nu} \left(\left[(\partial_\mu W^{\mu+\rho} - \partial^\rho W^{+}_\mu)(\partial_\nu W^{-}_\rho - \partial_\rho W^{-}_\nu) \right. \right. \\
\left. \left. - m_W^2 W^{+}_\mu W^{-}_\nu \right] + \mu \leftrightarrow \nu \right) \]

\[\frac{\Gamma_{1\text{m}}(h \rightarrow \gamma\gamma)}{\Gamma(h \rightarrow WW)} \bigg|_{J=2} = \frac{e^4}{20\pi^2} \beta \]

J=0 bound applies
(More conservative)
Comparison With Known Cases

SUSY

\[\chi \chi \rightarrow WW \]
Comparison With Known Cases

Little Higgs
\(\chi \chi \rightarrow (h) \rightarrow tt,WW \)
Comparison With Known Cases

UED

\(\chi \chi \rightarrow ff \)
Comparison with Continuum Bound

For Lines: \[
\frac{d\Phi}{dE} = \frac{\langle \sigma_A v \rangle}{8\pi m^2_c} \frac{J}{J_0} \frac{dN}{dE}
\]
where \[
\frac{dN}{dE} = 2\delta(E_\gamma - m_\chi)
\]

Search region includes caps \[|b| > 10^\circ\]

and Galactic center \[|b| < 10^\circ \quad |\ell| < 10^\circ\]

Choose Einasto DM profile with parameters to minimize signal

specifically \[
\rho_{\text{Einasto}}(r) = \rho_s \exp\left[-\frac{2}{\alpha} \left(\left[\frac{r}{r_s}\right]^\alpha - 1\right)\right]
\]
\[
\alpha = 0.22 \quad r_s = 21 \text{ kpc} \quad \rho_\odot = 0.385 \text{ GeV cm}^{-3}
\]
\[
r_\odot = 8.28 \text{ kpc}
\]

Can Kılıç, UT Austin
Comparison with Continuum Bound

For Continuum:
Isotropic Diffuse Gamma Rays
(Galactic + Extragalactic)
Conservative, dwarf galaxy limits could be an order of magnitude stronger.
Conservative boost factor (2.3)

Can Kılıç, UT Austin
Conclusions

• Robust bounds obtained for gamma ray lines from DM annihilation through unitarity considerations.
• Minimal line bounds apply to some cases without restriction and to most other cases in certain kinematic regimes.
• In selected cases, the minimal bounds are found to be an O(1) fraction of the full cross section.
• Experimental limits are less stringent than continuum limits, but useful to identify when full calculation is important.
Backup Slides