#### Limits on y-ray Lines from Unitarity



Can Kılıç, UT Austin in collaboration with K. Abazajian, P. Agrawal, Z. Chacko

## Beacon in the Dark

- Indirect detection at astrophysical distances: gammas are best.
- Direct annihilation gives monoenergetic photons. Rare.
- Bremsstrahlung and hadronic decays give continuum.
- Potential check on anomalies in other indirect detection channels.





## Line and Continuum



# Minimum strength for line with respect to continuum?

# Line Bound From Unitarity

- Strength of line is related to the primary annihilation mode.
- No model independent bound for the full amplitude.
- Imaginary part of loop is much more robust.
- Ratio to continuum also model-independent.



# Unitarity

- S matrix is unitary
- S=1+iT  $-i(T-T^{\dagger}) = T^{\dagger}T$
- put in intermediate states

$$-i\langle f|(T-T^{\dagger})|i\rangle = \Sigma_m \langle f|T^{\dagger}|m\rangle \langle m|T|i\rangle$$

$$V DM V SM V$$

 $S^{\dagger}S = 1$ 

- CP  $-2i \operatorname{Im}\langle f|T|i\rangle = \Sigma_m \langle f|T^{\dagger}|m\rangle \langle m|T|i\rangle$
- single channel  $4|\text{Im}\langle f|T|i\rangle|^2 = |\langle f|T^{\dagger}|m\rangle|^2|\langle m|T|i\rangle|^2$

# Methods

- Use |J,M;L,S> basis.
- Map annihilation into decay process.
- Calculate imaginary part of loop amplitude.



• Can also translate to line / continuum.



# Case of Spin-1/2 (Majorana) DM



antisymmetry forces S=0, J=0, CP odd

spin 1/2



heavy preferred CP forces S=0, L=0

spin 1



CP allows S=1, L=1 only

# Case of Spin-1/2 (Dirac) DM



take conservative case?



## Case of Spin-1 (real) DM



symmetry forces J=0,2 J=0 already covered

spin 1/2



light is now OK. CP forces S=1 L can be {1,2,3}





bound only in kinematic limits

## Summary of Results

| Dark Matter       | Initial spin | Annihilation |                                                                            | Bound              |
|-------------------|--------------|--------------|----------------------------------------------------------------------------|--------------------|
|                   |              | Channel      | Mode                                                                       | Dound              |
| Scalar            | J = 0        | WW           | L = 0, S = 0<br>L = 2, S = 2                                               | In NR / UR limits. |
|                   |              |              | ,                                                                          |                    |
|                   |              | $far{f}$     | L = 1, S = 1                                                               | $\checkmark$       |
| Majorana Fermion  | J = 0        | WW           | L=1,S=1                                                                    | $\checkmark$       |
|                   |              | $f\bar{f}$   | L = 0, S = 0                                                               | $\checkmark$       |
| Dirac Fermion     | J = 0        | WW           | L = 1, S = 1                                                               | $\checkmark$       |
|                   |              | $f\bar{f}$   | L = 0, S = 0                                                               | $\checkmark$       |
|                   | J = 1        | Forbidden    |                                                                            |                    |
| Real Vector Boson | J = 0        | WW           | L = 0, S = 0<br>L = 2, S = 2                                               | In NR / UR limits. |
|                   |              | $f\bar{f}$   | L = 0, S = 0                                                               | $\checkmark$       |
|                   | J = 2        | WW           | $\begin{split} L &= 2, S = 0 \\ L &= \{0, 1, 2, 3, 4\}, S = 2 \end{split}$ | In NR limit.       |
|                   |              | $f\bar{f}$   | $L = \{1, 2, 3\}, S = 1$                                                   | In NR / UR limits. |

#### Results – Scalar DM

Can be represented as decay of heavy scalar.

To fermions : 
$$\mathcal{L}_{int} = \lambda \bar{f} f \phi$$
  
 $\frac{\Gamma_{Im}(\phi \to \gamma \gamma)}{\Gamma(\phi \to f\bar{f})} = \frac{N_c Q^4 e^4 m_f^2}{32\pi^2 m_\chi^2} \beta \left[ \tanh^{-1} \beta \right]^2$   
To W's :  $\mathcal{L}_{int} = \frac{1}{\Lambda} \phi \operatorname{Tr} \left[ F_{\mu\nu} F^{\mu\nu} \right]$   
 $\frac{\Gamma_{Im}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} = \frac{3e^4}{64\pi^2} \beta$  (NR)

### Results – Scalar DM

To W's, ultra-relativistic regime

Ultra-relativistic: Use equivalence theorem to separate transverse and longitudinal modes. •Longitudinal state is unique.

$$\mathcal{L}_{int} = \alpha \phi \ H^{\dagger} H \qquad \qquad \frac{\Gamma_{\mathrm{Im}}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} \sim \frac{e^4}{16\pi^2} \frac{m_W^4}{m_\chi^4} \left[ \log \left( \frac{4m_\chi^2}{m_W^2} \right) \right]^2$$

•Transverse state as well, once CP is taken into account.

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \phi \operatorname{Tr} \left[ F_{\mu\nu} F^{\mu\nu} \right] \qquad \qquad \frac{\Gamma_{\mathrm{Im}}(\phi \to \gamma\gamma)}{\Gamma(\phi \to WW)} = \frac{e^4}{32\pi^2} \left[ \log \left( \frac{4m_{\chi}^2}{m_W^2} \right) \right]^2$$

•Combine: 
$$\frac{\Gamma_{\rm Im}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} = F_{\rm T} \frac{e^4}{32\pi^2} \left[ \log\left(\frac{4m_{\chi}^2}{m_W^2}\right) \right]$$

## Results – Majorana Fermion DM

Can be represented as decay of heavy pseudoscalar.

 $\mathcal{L}_{int} = i\lambda \,\bar{f} \,\gamma^5 f \,\varphi$ To fermions :  $\frac{\Gamma_{\rm Im}(\varphi \to \gamma \gamma)}{\Gamma(\varphi \to f\bar{f})} = \frac{N_c Q^4 e^4 m_f^2}{32\pi^2 m_{\gamma}^2} \frac{1}{\beta} \left[\tanh^{-1}\beta\right]^2$  $\mathcal{L}_{int} = \frac{1}{\Lambda} \varphi \mathrm{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu})$ To W's :  $\frac{\Gamma_{\rm Im}(\varphi \to \gamma \gamma)}{\Gamma(\varphi \to WW)} = \frac{e^4}{8\pi^2} \beta \left[\tanh^{-1}\beta\right]^2$ 

both cases consistent with known SUSY results.

### Results – Real Vector DM

J=0 case already covered, consider J=2 (more conservative bound applies) Can be represented as decay of heavy spin-2 particle

To fermions : Non-relativistic limit. Single species assumed.

$$\begin{split} \mathcal{L}_{int} &= -\frac{\kappa}{2} h^{\mu\nu} \bar{f} \; i \gamma_{\mu} \partial_{\nu} f \\ \frac{\Gamma_{\rm Im}(h \to \gamma \gamma)}{\Gamma(h \to f \bar{f})} \Big|_{J=2} &= \frac{N_c Q^4 e^4 \beta^3}{120\pi^2} & \text{p-wave,} \\ \end{split}$$

## Results – Real Vector DM

J=0 case already covered, consider J=2 (more conservative bound applies) Can be represented as decay of heavy spin-2 particle

To fermions : Ultra-relativistic limit.

If there are multiple final states and no phases, then bound still applies.

$$\begin{split} \mathcal{L}_{int} &= -\frac{\kappa}{2} h^{\mu\nu} \bar{f} \; i \bar{\sigma}_{\mu} \partial_{\nu} f \\ \frac{\Gamma_{\rm Im}(h \to \gamma \gamma)}{\Gamma(h \to f \bar{f})} \bigg|_{J=2} = \frac{N_f N_c Q^4 e^4}{144\pi^2} \qquad \text{J=0 solution} \end{split}$$

J=0 suppressed. bound applies.

## Results – Real Vector DM

J=0 case already covered, consider J=2 (more conservative bound applies) Can be represented as decay of heavy spin-2 particle

To W's : Non-relativistic limit.

$$\mathcal{L}_{int} = \frac{\kappa}{2} h^{\mu\nu} \left( \left[ (\partial_{\mu} W^{+\rho} - \partial^{\rho} W^{+}_{\mu}) (\partial_{\nu} W^{-}_{\rho} - \partial_{\rho} W^{-}_{\nu}) - m_{W}^{2} W^{+}_{\mu} W^{-}_{\nu} \right] + \mu \leftrightarrow \nu \right)$$

$$\frac{\Gamma_{\rm Im}(h \to \gamma \gamma)}{\Gamma(h \to WW)} \bigg|_{J=2} = \frac{e^4}{20\pi^2} \beta$$

J=0 bound applies (More conservative)

#### **Comparison With Known Cases**



Can Kılıç, UT Austin

### **Comparison With Known Cases**



Can Kılıç, UT Austin

#### **Comparison With Known Cases**



#### **Comparison with Continuum Bound**

For Lines: 
$$\frac{d\Phi}{dE} = \frac{\langle \sigma_{\rm A} v \rangle}{8\pi m_{\chi}^2} \frac{\mathcal{J}}{J_0} \frac{dN}{dE}$$
 where  $\frac{dN}{dE} = 2\delta(E_{\gamma} - m_{\chi})$ 

Search region includes caps  $|b|~>~10^{\circ}$  and Galactic center  $|b|~<~10^{\circ}$   $|\ell|~<~10^{\circ}$ 

Choose Einasto DM profile with parameters to minimize signal

specifically 
$$\rho_{\text{Einasto}}(r) = \rho_s \exp\left[-\frac{2}{\alpha}\left(\left[\frac{r}{r_s}\right]^{\alpha} - 1\right)\right]$$
  
 $\alpha = 0.22$   
 $r_s = 21 \text{ kpc}$   
 $r_{\odot} = 8.28 \text{ kpc}$   
Can Kilic, UT Austin  $\rho_{\odot} = 0.385 \text{ GeV cm}^{-3}$ 

#### **Comparison with Continuum Bound**

For Continuum:

Isotropic Diffuse Gamma Rays

(Galactic + Extragalactic)

Conservative, dwarf galaxy limits could be an order of magnitude stronger.

Conservative boost factor (2.3)



# Conclusions

- Robust bounds obtained for gamma ray lines from DM annihilation through unitarity considerations.
- Minimal line bounds apply to some cases without restriction and to most other cases in certain kinematic regimes.
- In selected cases, the minimal bounds are found to be an O(1) fraction of the full cross section.
- Experimental limits are less stringent than continuum limits, but useful to identify when full calculation is important.

## **Backup Slides**