Constraining Asymmetric Dark Matter

Matthew R Buckley

What we've been talking about

- A: statistical
- B: astrophysical
- C: theoretical
-D: even more theoretical

The WIMP miracle

- The Standard Dark Matter story:
- All particles present in thermal bath, continual annihilation/production processes allow n to follow equilibrium density:

• Eventually these processes freeze out, and Y becomes constant: a thermal relic.

口 Fermilab

Beyond WIMPs

- If not the WIMP miracle, then what?
- Take inspiration from the one component of the Universe we (mostly) understand.
 - Baryons are not a thermal relic. QCD cross-section too large by a factor of $\sim 10^9$
 - We have baryons today because of an initial asymmetry 10^{-} Y 10° $Y_{\text{Asym.}}$ Y_{ψ} 10^{-12} $Y_{\overline{\psi}}$ $Y_{\text{eq.}}$ 10 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 1 x = m/Termilab

Asymmetric Dark Matter

- If asymmetry explains baryons, why not dark matter as well?
- Take guidance from $\Omega_{\rm DM}/\Omega_B = \mathcal{O}(1)$, rather than from the WIMP miracle.
- Assume this relation is not a coincidence, but a hint of deeper physics. Then:
 - DM not a thermal relic.
 - Production of DM related to the production of baryons
 - Baryons and thus DM (X) contains an asymmetry: X but not \overline{X}

Asymmetric Dark Matter

- "Dark" Sakharov conditions:
 - CP violation
 - Departure from thermal equilibrium
 - X-symmetry violation
- Additional sector to "hide" CP violation that can seed a *B*-asymmetry opens the door for many new solutions for baryogenesis.
- Here, I will remain agnostic as to the initial source of the asymmetry.

The Original ADM

- An idea with a lengthy history
 - Originally postulated in technicolor models Nussinov (1985), Barr, Chivukula, Farhi (1990)
 - Electroweak symmetry broken by condensate of a new strongly interacting force with confinement at low energies (analogous to strong nuclear force)
 - Leads to "technibaryons," very similar to baryons

The Original ADM

- Some of these technibaryons are charged under $SU(2)_L$, results in sphaleron interactions at high temperatures ($T \gtrsim 200 \text{ GeV}$)
 - These interactions would transfer any asymmetry from baryons into technibaryons (or vice versa)
 - LEP put strong constraints on most technicolor

The New ADM

• Spurred by light DM signals and general interest in non-supersymmetry-like models:

D.E. Kaplan *et al* 0901.4117 Cohen & Zurek 0909.2035 MRB & Randall 1009.0270 (see Refs. [1-2] of 1109.2164)

- Phenomenological: bottom-up, don't require solutions to hierarchy/naturalness
- Plenty of names to choose from: Xogenesis, aidnogenesis, darkogenesis, hylogenesis....

The New ADM

- Lots of freedom in how asymmetry in visible/ dark sectors related:
 - Explicit Baryon/Lepton # violating operators
 - Electroweak Sphalerons
 - Sphalerons of new gauge groups
- Can lead to a wide range of masses:
 - From ~5 GeV to ~TeV

What is different about ADM?

- What does every ADM model need?
 - Needs to be *asymmetric*
 - So no symmetric (thermal) component
 - (I'll assume < 10% of total)
- Requires $\sigma_{ADM} \gtrsim \sigma_{Thermal} \sim 1 \text{ pb}$
 - So: large interactions with *something*

Effective Operators

 Assume ADM annihilates into SM quarks, parametrized by an effective operator with scale

$$\mathcal{L}_{F,S} = \frac{m_q}{\Lambda^3} \bar{\chi}_F \chi_F \bar{q} q$$

$$\mathcal{L}_{S,S} = \frac{m_q}{\Lambda^2} \chi_S^* \chi_S \bar{q} q$$

$$\mathcal{L}_{F,P} = \frac{m_q}{\Lambda^3} \bar{\chi}_F \gamma^5 \chi_F \bar{q} \gamma^5 q$$

$$\mathcal{L}_{F,V} = \frac{1}{\Lambda^2} \bar{\chi}_S^F \gamma_\mu \chi_F \bar{q} \gamma^\mu q$$

$$\mathcal{L}_{S,V} = \frac{1}{\Lambda^2} \chi_S^* \partial_\mu \chi_S \bar{q} \gamma^\mu q$$

$$\mathcal{L}_{F,A} = \frac{1}{\Lambda^2} \bar{\chi}_F^F \gamma_\mu \chi_F \bar{q} \gamma^5 \gamma^\mu q$$

$$\mathcal{L}_{F,T} = \frac{1}{\Lambda^2} \bar{\chi}_F^F \sigma_{\mu\nu} \chi_F \bar{q} \sigma^{\mu\nu} q$$

- Lower limits on Λ from direct detection, collider searches, applicability of formalism ($m_{\chi} < 2\pi\Lambda$)
- Upper limits from over-annihilation of ADM

辈 Fermilab

13/ /22

103

Effective Operators

103

15/22

Implications

- This parameter space is highly constrained. Can relax these constraints by
 - having ADM annihilate into leptons,
 - or annihilate into new light dark particles,
 - or if the effective operator formalism doesn't apply.
 - New light vector bosons?
 - Requires new particles close in mass to DM
- All of these interesting avenues for ADM model building. The last especially is suggestive of technicolor-like dark matter.

Indirect Detection

- ADM consists of X but not \bar{X}
 - Naive expectation is therefore no indirect detection signals are possible
 - (Bad news for this workshop)
- However, DM is a singlet under the unbroken SM gauge groups $SU(3)_C \times U(1)_{\rm EM}$
 - Like with neutrinos, it is therefore generically possible to write Lagrangians containing "Majorana" $\Delta X = 2$ mass terms

 $\mathcal{L} \supseteq m_D X \bar{X} + m_M (X X + \bar{X} \bar{X})$

Oscillating Dark Matter

 Combination of Dirac and Majorana mass terms leads to split mass eigenvalues:

 $m_1 = m_D - m_M, \ m_2 = m_D + m_M$

- DM produced as X will oscillate into \bar{X} with a timescale of $\tau = \Delta m^{-1}$
- Combined with large annihilation cross-section, can lead to significant energy injection at late times
- With $\tau_{\rm Universe}^{-1} \sim 10^{-41}~{\rm GeV}$, possibility of extremely strict constraints on ADM mass matrix
 - Alternatively, a positive signal could probe extremely high scale physics

口Fermilab

Oscillating Dark Matter

- Oscillation time τ must be longer than $t_{\rm freeze-out}$
- If $\tau \sim t_{\rm freeze-out}$, annihilation can re-start ("thaw") and resymmetrize the ADM MRB, Profumo 1109.2164

 Constraints (for large ⟨σv⟩) when oscillation time characteristic timescale of BBN, CMB, and ≤ annihilation in dwarf galaxies in the present day (Fermi dwarf stacking)

辈 Fermilab

Constraints & Implications

- Fairly stringent constraints 5, on oscillation time $\tau = \Delta m^{-1}$
- Outside of relatively small window of allowed $\langle \sigma v \rangle$, find $m_M \lesssim 10^{-41} \text{ GeV}$
 - (Derived for fermions)
- Implies some symmetry absolute forbids $\Delta X = 2$ mass terms

⁻ermilab

Constraints & Implications

- Work by Cirelli *et al* (1110.3809) and Tulin *et al* (1202.0283) followed up in more detail.
- ^{*} "Flavor" (X/\bar{X}) -sensitive interactions need
 - scattering off of thermal bath to break coherence in oscillations

What does it all mean?

- This is a conference on gamma rays
- Naive prediction of ADM is that no annihilation should occur in the sky today.
 - Bad news for indirect detection
- But non-observation (combined with direct detection/collider results) has potential to probe physics up to Planck scale
- Depending on interactions in early Universe, could have very large cross sections today
 - More (type D) theory work to be done here

口 Fermilab