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What we’ve been
talking about

® A:statistical
® B:astrophysical
® C:theoretical

® ....D:even more theoretical
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The WIMP miracle

e The Standard Dark Matter story:

e All particles present in thermal bath,continual
annihilation/production processes allow n to
follow equilibrium density:
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e Eventually these processes freeze out, and Y
becomes constant: a thermal relic.
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Beyond WIMPs

¢ |[f not the WIMP miracle, then what?
e Take inspiration from the one component of the
Universe we (mostly) understand.
e Baryons are not a thermal relic. QCD cross-
section too large by a factor of ~ 10~
* We have baryons today because of an initial

asymmetry
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Asymmetric Dark Matter

e [f asymmetry explains baryons, why not dark
matter as well?

e Take guidance from Qpy\/Qp = O(1), rather
than from the WIMP miracle.

e Assume this relation is not a coincidence, but
a hint of deeper physics. Then:
e DM not a thermal relic.
¢ Production of DM related to the production
of baryons

e Baryons - and thus DM (X) - contains an
asymmetry: X but not X
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Asymmetric Dark Matter

e “Dark” Sakharov conditions:
e CP violation
e Departure from thermal equilibrium
e X -symmetry violation

e Additional sector to “hide” CP violation that
can seed a B-asymmetry opens the door for
many new solutions for baryogenesis.

e Here, | will remain agnostic as to the initial
source of the asymmetry.
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The Original ADM

* An idea with a lengthy history

e Qriginally postulated in technicolor models
Nussinov (1985), Barr, Chivukula, Farhi (1990)
e Electroweak symmetry broken by condensate of a
new strongly interacting force with confinement at
low energies (analogous to strong nuclear force)

e | eads to “technibaryons,” very similar to baryons

Aqep Apc? Agut
T T : : : : .
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The Original ADM

e Some of these technibaryons are charged
under SU(2)r, , results in sphaleron interactions
at high temperatures (7' = 200 GeV)
* These interactions would transfer any
asymmetry from baryons into technibaryons (or

vice versa)
e | EP put strong constraints on most technicolor

mOdels. A,QCD AT,C? . , , ' AGIUT
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The New ADM

e Spurred by light DM signals and general
interest in non-supersymmetry-like models:

D.E. Kaplan et al 0901.4117
Cohen & Zurek 0909.2035

MRB & Randall 1009.0270

... (see Refs. [1-2] of 1109.2164)

e Phenomenological: bottom-up, don’t require
solutions to hierarchy/naturalness

e Plenty of names to choose from: Xogenesis,
aildnogenesis, darkogenesis, hylogenesis....
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The New ADM

e | ots of freedom in how asymmetry in visible/
dark sectors related:

o Explicit Baryon/Lepton # violating operators
e Electroweak Sphalerons
e Sphalerons of new gauge groups

e (Can lead to a wide range of masses:
e From ~5 GeV to ~TeV
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What is different about ADM?

e \What does every ADM model need?
* Needs to be asymmetric
¢ S0 no symmetric (thermal) component
o (I'llassume < 10% of total)

® ReCIUireS OADM z OThermal ~ 1 Pb

e So: large interactions with something
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Effective Operators

e Assume ADM annihilates into SM quarks,
parametrized by an effective operator with scale
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e |[owerlimits on A from direct detection, collider
searches, applicability of formalism (m, < 27A)

e Upper limits from over-annihilation of ADM
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Effective Operators
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Effective Operators

MRB 1104.1429
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Effective Operators
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Implications

e This parameter space is highly constrained. Can
relax these constraints by

e having ADM annihilate into leptons,

e or annihilate into new light dark particles,

e or if the effective operator formalism doesn’t apply.
e New light vector bosons?
e Requires new particles close in mass to DM

o All of these interesting avenues for ADM model
building. The last especially is suggestive of
technicolor-like dark matter.
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Indirect Detection

e ADM consists of X but not X

e Naive expectation is therefore no indirect detection
signals are possible

e (Bad news for this workshop)

e However, DM is a singlet under the unbroken SM
gauge groups SU(3)c x U(1)gm
e | ike with neutrinos, it is therefore generically
possible to write Lagrangians containing
“Majorana” AX = 2 mass terms

LOmpXX +my( XX+ XX)
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Oscillating Dark Matter

e Combination of Dirac and Majorana mass terms
leads to split mass eigenvalues:
mi=mp —mp, M2 =Mp + My
e DM produced as X will oscillate into X with a
timescale of 7= Am™*

e Combined with large annihilation cross-section, can
lead to significant energy injection at late times

o With 7. . ~10"*" GeV, possibility of extremely
strict constraints on ADM mass matrix

e Alternatively, a positive signal could probe
extremely high scale physics
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Oscillating Dark Matter

e (Oscillation time 7 must be longer than teeeze—out

® If T~ treeze—out, @annihilation can re-start (“thaw”)
and resymmetrlze the ADM

MRB, Profumo 1109.2164
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e Constraints (for large (cv) ) when oscillation time
characteristic timescale of BBN, CMB, and <
annihilation in dwarf galaxies in the present day
(Fermi dwarf stacking)
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Constraints & Implications

m =10 GeV MRB, Profumo 1109.216
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e |Implies some symmetry
absolute forbids AX =2
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Constraints & Implications

e Work by Cirelli et al 1110380090 and Tulin et al
(1202.0283) followed up in more detail.

e “Flavor” (X/X)-sensitive interactions need
scattering off of thermal bath to break
coherence in oscillations

Tullin et al 1202.0283
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What does it all mean?

e This is a conference on gamma rays

e Naive prediction of ADM is that no annihilation
should occur in the sky today.

e Bad news for indirect detection

e But non-observation (combined with direct
detection/collider results) has potential to
probe physics up to Planck scale

e Depending on interactions in early Universe,
could have very large cross sections today

e More (type D) theory work to be done here
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