DM Workshop@UT Austin May 7, 2012

Constraints on dark matter annihilation cross section with the Fornax cluster

Shin'ichiro Ando University of Amsterdam

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

Galaxy clusters: Why interesting?

lusters

0.85

Bullet cluster (IE0657-56)

-1.4

0.65

- The largest virialized darkmatter structure
- The largest number of dark matter particles
- Presence of collisionless dark matter clearly seen in bullet cluster
- Good probe of cosmological parameters

Cluster constraints on DM properties

Ackermann et al., *JCAP* **1005**, 025 (2010)

Factor >30 gap from canonical cross section

Most stringent constraint on decay lifetime

Dugger et al., JCAP 1012, 015 (2010)

Annihilation boom substructure

atter density fie Millennium Simulation (Springel vs a cluster-size object, where lots of substructures are identified.

Flux boosted by a factor of ~1000 Gao et al., arXiv:1107.1916

Annihilation boost in substructure

Huang et al., arXiv:1110.1529

Cluster limits with subhalos

Ackermann et al., arXiv:1108.3546 Geringer-Sameth & Koushiappas, arXiv:1108.2914

 10^{2}

WIMP mass [GeV]

 10^{3}

 10^{1}

Motivation

- Does stacking help? If so, how much?
 - There are many more clusters than dwarfs!!

- What is the effect of baryons (stars+gas)?
 - Baryons dominate gravitational potential at central regions
 - This should modify dark matter profile (adiabatic contraction)

It improves limits by a factor ~4

Dark matter annihilation in galaxy clusters

Gamma-ray intensity from annihilation

$$I_{\gamma}(\theta, E) = \frac{1}{4\pi} \frac{1}{(1+z)^{2}} \sqrt[\langle \sigma v \rangle }{2m_{\chi}^{2}} \frac{dN_{\gamma}((1+z)E)}{dE} \int dl \ \rho^{2}(r(l,\theta))$$
Cosmological redshift Particle-physics factor Astrophysical factor

• Depends on three factors

- Particle physics: annihilation cross section and dark-matter mass; depends on SUSY models, etc.
- Astrophysics: density profile and subhalos
- Cosmological redshift: straightforward if redshift is measured

Astrophysical factor: density profile

Umetsu et al., Astrophys. J. 738, 41 (2011)

 Numerical simulations imply universal form of density profile: NFW

 $\rho = \frac{\rho_s}{(r/r_s)(r/r_s + 1)^2}$

- $\rho \sim r^{-1}$ for small radii, and $\rho \sim r^{-3}$ for large radii
- NFW profile is confirmed with lensing observations

Gamma-ray intensity

	z	M _{vir} (10 ¹⁴ h ⁻¹ M _{sun})
Fornax	0.005	I.2
Coma	0.023	9.6

- Intensity due to subhalos is much more extended than the smooth component
- Subhalo boost factor is ~1000 for cluster-size halos, if minimum subhalos are of Earth size

Analysis of Fermi-LAT data

- We analyze data of Fermi-LAT for 2.8 years around 49 relatively large galaxy clusters
 - DIFFUSE and DATACLEAN class of photon data between MET = 239557417 s and 329159098 s
 - 23 clusters from X-ray (Reiprich & Boehringer 2002) and 34 from cosmology catalogs (Vikhlinin et al. 2009); 3 are found in both and 5 are at low Galactic latitudes

- We first perform likelihood analysis of the data using the *known* sources (from 2FGL catalog) as well as both Galactic and extragalactic backgrounds
 - Use photons between I GeV and 100 GeV, and divide them into 20 energy bins equally spaced logarithmically
 - Models are convolved with P6_VII instrumental response functions

Fermi-LAT data and best-fit model for Fornax

- There is no gamma-ray source at cluster location
- We then add cluster component at the center of the best-fit model map, to put upper limit on that component

Upper limits on cluster component

Analyze

With

Limits on annihilation cross section from Fornax

NFW halo with no subhalos

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

Cross section limits for all clusters

Cross section limits from stacking analysis

• Procedure

- Remove clusters with >3σ excess compared with (fixed) background
- This reduces to 38 clusters to be analyzed
- Result
 - Stacking does not help
 - <u>Better to model Fornax more</u>
 <u>precisely</u>

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

The Fornax cluster

NGC 1380

Fornax Galaxy Cluster

- NGC 1382 NGC 1381 NGC 1399 NGC 1379
- NGC 1427A
- NGC 1404
 - NGC 1389

NGC 1387

- $M \sim 10^{14} M_{sun}$
- D ~ 20 Mpc
 - (I, b) = (236.72 deg, -53.64 deg)
- The second largest cluster locally
- Central massive elliptical (cD) galaxy: NGC 1399

http://heritage.stsci.edu/2005/09/supplemental.html

Baryons in Fornax

HST photometry (4"x4" region)

Lauer et al. Astron. J. 129, 2138 (2005)

ROSAT observations

Gas

Paolillo et al. Astrophys. J. 565, 883 (2002)

Density profiles of Fornax

- Surface brightness → luminosity profile → density profile
- Stars dominate the gravitational potential at the central region
- What is the feedback effect of this deepened potential?

Adiabatic contraction

Blumenthal et al. Astrophys. J. 301, 27 (1986)

Angular momentum conservation:

 $M_i(r_i)r_i = M_f(r_f)r_f$ $M_f(r_f) = [M_{dm,f}(r_f) + M_{b,f}(r_f)]r_f = [M_{dm,i}(r_i) + M_{b,f}(r_f)]r_f$

Modified halo contraction

Gnedin et al., Astrophys. J. 616, 16 (2004); arXiv:1108.5736

$$M_i(\bar{r}_i)r_i = [M_{\mathrm{dm},i}(\bar{r}_i) + M_{\mathrm{b},f}(\bar{r}_f)]r_f$$
$$\frac{\bar{r}}{0.03r_{\mathrm{vir}}} = A_0 \left(\frac{r}{0.03r_{\mathrm{vir}}}\right)^w$$

• $A_0 = 1.6$, w = 0.8 well explain simulation results

- Uncertainty range: w = 0.6–1
- There is no firm observational evidence for/ against this effect yet

Effect of halo contraction

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

Canonical contraction model (A₀=1.6, w=0.8)

 Density is enhanced at the center for both NFW and Einasto profiles

Gamma-ray intensity enhanced

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

- Contraction produces sub-PSF structure at 10⁻⁴-10⁻³ deg (30-300 pc)
 - Gamma-ray flux is boosted by a factor of
 - ~4 (NFW)

• ~2 (Einasto)

Cross section upper limits

• Limits improve by a factor of

- 4.1 (NFW)
- 2.4 (Einasto)
- This is almost independent of mass and annihilation channel

<σv> < (2-3)×10⁻²⁵ cm³/s
 for low-mass WIMPs

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

Other model parameters

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

- "Adiabatic":A₀=1, w=1
- "Break": no contraction within I kpc (~ current resolution limit)
- Uncertainty range of the boost: 2–6

How important is this?: Compare with subhalos

Ando & Nagai, arXiv:1201.0753 [astro-ph.HE]

• To boost the limit by a factor of 4, the minimum subhalo mass has to be smaller than 1 M_{sun}

 Otherwise, one cannot ignore the effect of halo contraction

Conclusions

- Galaxy clusters are potentially strong source of gamma rays from dark matter annihilation
- We showed that stacking ~50 clusters does not improve the limits obtained with Fornax
- The detailed mass modeling of Fornax is therefore important
- We computed the halo contraction of Fornax and showed that the cross section limits improved by a factor of ~4
- The limits for low-mass WIMPs are within a factor of 10 from the canonical annihilation cross section after ~3 years