Constraints on dark matter annihilation cross section with the Fornax cluster

Shin’ichiro Ando
University of Amsterdam

Galaxy clusters: Why interesting?

- The largest virialized dark-matter structure
- The largest number of dark matter particles
- Presence of *collisionless* dark matter clearly seen in bullet cluster
- Good probe of cosmological parameters

Bullet cluster (1E0657-56)
Cluster constraints on DM properties

Ackermann et al., JCAP 1005, 025 (2010)

Factor >30 gap from canonical cross section

Dugger et al., JCAP 1012, 015 (2010)

Most stringent constraint on decay lifetime
Annihilation boost in substructure

Millennium Simulation

Flux boosted by a factor of \(\sim 1000 \)

Gao et al., arXiv:1107.1916

\[
M_{\text{min}} = 10^{-12} \, M_\odot
\]

\[
M_{\text{min}} = 10^{-6} \, M_\odot
\]

\[
M_{\text{min}} = 5 \times 10^7 \, M_\odot
\]

\(> 13 \, \text{dex gap} \)

Resolution limit

Extrapolation
Annihilation boost in substructure

Huang et al., arXiv:1110.1529

Cluster limits with subhalos

Dwarf limits (no subhalos)

Ackermann et al., arXiv:1108.3546
Geringer-Sameth & Koushiappas, arXiv:1108.2914
Motivation

- Does stacking help? If so, how much?
 - There are many more clusters than dwarfs!!

 No! It doesn’t help

- What is the effect of baryons (stars+gas)?
 - Baryons dominate gravitational potential at central regions
 - This should modify dark matter profile (adiabatic contraction)

 It improves limits by a factor ~4
Dark matter annihilation in galaxy clusters

Gamma-ray intensity from annihilation

\[I_\gamma(\theta, E) = \frac{1}{4\pi} \frac{1}{(1 + z)^2} \langle \sigma v \rangle \frac{dN_\gamma((1 + z)E)}{dE} \int dl \rho^2(r(l, \theta)) \]

- Depends on three factors
 - Particle physics: annihilation cross section and dark-matter mass; depends on SUSY models, etc.
 - Astrophysics: density profile and subhalos
 - Cosmological redshift: straightforward if redshift is measured
Astrophysical factor: density profile

- Numerical simulations imply universal form of density profile: NFW
 \[\rho = \frac{\rho_s}{(r/r_s)(r/r_s + 1)^2} \]
- \(\rho \sim r^{-1} \) for small radii, and \(\rho \sim r^{-3} \) for large radii
- NFW profile is confirmed with lensing observations
Gamma-ray intensity

- Intensity due to subhalos is much more extended than the smooth component
- Subhalo boost factor is ~1000 for cluster-size halos, if minimum subhalos are of Earth size

<table>
<thead>
<tr>
<th></th>
<th>z</th>
<th>M_{vir} ($10^{14} , h^{-1} , M_{\odot}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fornax</td>
<td>0.005</td>
<td>1.2</td>
</tr>
<tr>
<td>Coma</td>
<td>0.023</td>
<td>9.6</td>
</tr>
</tbody>
</table>
Analysis of Fermi-LAT data

- We analyze data of Fermi-LAT for 2.8 years around 49 relatively large galaxy clusters
 - DIFFUSE and DATACLEAN class of photon data between MET = 239557417 s and 329159098 s
 - 23 clusters from X-ray (Reiprich & Boehringer 2002) and 34 from cosmology catalogs (Vikhlinin et al. 2009); 3 are found in both and 5 are at low Galactic latitudes

- We first perform likelihood analysis of the data using the known sources (from 2FGL catalog) as well as both Galactic and extragalactic backgrounds
 - Use photons between 1 GeV and 100 GeV, and divide them into 20 energy bins equally spaced logarithmically
 - Models are convolved with P6_V11 instrumental response functions
There is no gamma-ray source at cluster location.

We then add cluster component at the center of the best-fit model map, to put upper limit on that component.

Integrated maps for 1–100 GeV
Upper limits on cluster component

Analyze

Counts Map (Fornax)

Declination
-36.0
-35.5
-35.0
-34.5
Right ascension
55.5
55.0
54.5
54.0
53.5

Data

Cluster model

Fornax (host halo only)

Fornax (with subhalos)

Model Map with Cluster (Fornax)

Declination
-36.0
-35.5
-35.0
-34.5
Right ascension
55.5
55.0
54.5
54.0
53.5

Outcome

Best-fit model (almost isotropic background) and cluster component (no subhalos) allowed by 5%

95% CL upper limits on annihilation cross section
Limits on annihilation cross section from Fornax

NFW halo with no subhalos

Cross section limits for all clusters

NFW halo only

bb channel
Cross section limits from stacking analysis

- Procedure
 - Remove clusters with $>3\sigma$ excess compared with (fixed) background
 - This reduces to 38 clusters to be analyzed

- Result
 - Stacking does not help
 - Better to model Fornax more precisely

The Fornax cluster

- $M \sim 10^{14} M_{\text{sun}}$
- $D \sim 20 \text{ Mpc}$
- $(l, b) = (236.72 \text{ deg}, -53.64 \text{ deg})$
- The second largest cluster locally
- Central massive elliptical (cD) galaxy: NGC 1399

http://heritage.stsci.edu/2005/09-supplemental.html
Baryons in Fornax

HST photometry (4''x4'' region)

ROSAT observations

Stars

Precise measurement down to 1 pc!

Gas

Density profiles of Fornax

- Surface brightness \rightarrow luminosity profile \rightarrow density profile
- Stars dominate the gravitational potential at the central region
- What is the feedback effect of this deepened potential?

Profiles from DM-only simulations
Adiabatic contraction

Angular momentum conservation:

\[M_i(r_i) r_i = M_f(r_f) r_f \]

\[M_f(r_f) = [M_{dm,f}(r_f) + M_{b,f}(r_f)] r_f = [M_{dm,i}(r_i) + M_{b,f}(r_f)] r_f \]

Modified halo contraction

\[M_i(\bar{r}_i)r_i = [M_{dm,i}(\bar{r}_i) + M_{b,f}(\bar{r}_f)]r_f \]

\[\frac{\bar{r}}{0.03r_{vir}} = A_0 \left(\frac{r}{0.03r_{vir}} \right)^w \]

- \(A_0 = 1.6, w = 0.8 \) well explain simulation results
- Uncertainty range: \(w = 0.6-1 \)
- There is no firm observational evidence for/against this effect yet
Effect of halo contraction

- Canonical contraction model ($A_0=1.6$, $w=0.8$)
- Density is enhanced at the center for both NFW and Einasto profiles
Gamma-ray intensity enhanced

- Contraction produces sub-PSF structure at 10^{-4}–10^{-3} deg (30–300 pc)
- Gamma-ray flux is boosted by a factor of
 - ~4 (NFW)
 - ~2 (Einasto)
Cross section upper limits

- Limits improve by a factor of
 - 4.1 (NFW)
 - 2.4 (Einasto)
- This is almost independent of mass and annihilation channel
- \(\langle \sigma v \rangle < (2–3) \times 10^{-25} \text{ cm}^3/\text{s} \) for low-mass WIMPs

Other model parameters

- “Adiabatic”: $A_0 = 1, w = 1$
- “Break”: no contraction within 1 kpc (\sim current resolution limit)
- Uncertainty range of the boost: 2–6

How important is this?: Compare with subhalos

To boost the limit by a factor of 4, the minimum subhalo mass has to be smaller than $1 \, M_{\text{sun}}$

Otherwise, one cannot ignore the effect of halo contraction

Conclusions

• Galaxy clusters are potentially strong source of gamma rays from dark matter annihilation

• We showed that stacking ~50 clusters does not improve the limits obtained with Fornax

• The detailed mass modeling of Fornax is therefore important

• We computed the halo contraction of Fornax and showed that the cross section limits improved by a factor of ~4

• The limits for low-mass WIMPs are within a factor of 10 from the canonical annihilation cross section after ~3 years