

# The Main Sequence of Quasars (or, the nature of Eigenvector 1) 

## Yue Shen

Hubble Fellow, Carnegie Observatories
Based on the work of Shen \& Ho (2014)

## Outline

- Background: EV1 and orientation
- New observations of quasar properties (SDSS, WISE, etc)
- A simple unification for broad-line quasars
- Open questions
- Unification of Type 1 and Type 2 AGN

- Eigenvector 1 (EV1, Boroson \& Green 1992): most of the variance in the optical spectra of (Type 1) quasars comes from an anti-correlation between Fell strength and narrow [OIII] strength
- Many other physical properties seem to correlate with EV1 (X-ray properties, CIV properties, narrow-line Seyfert 1s, BALQSOs, etc): Wang et al. 1996, Boller et al. 1996, Laor et al. 1997, Brandt et al. 2000, Sulentic et al. 2000, and many more


## Evidence for a flattened BLR

- Radio jet orientation (Wills \& Browne 1986, Runnoe et al.)
- Disk emitters (Chen, Eracleous, Halpern et al.)

- Dynamical evidence from reverberation mapping (Pancoast et al.)



## Motivation of our work

- What drives EV1?
- Eddington ratio long suspected as the driver (Laor 2000, Boroson 2002), but a definitive proof is lacking
- How to integrate orientation into this picture?


## 20 years ago




87 PG quasars from BG92

## Now


>20,000 quasars from SDSS DR7 (Shen \& Ho 2014)
This 2D FWHM (Hbeta) versus Rfe EV1 plane is also known as the 4DE1 plane used by Sulentic and collaborators

## A closer look at [OIII]



EV1 + Baldwin effect for [OIII] (e.g., Stern et al. 2013, Zhang et al. 2013)



## Other properties along EV1





CIV properties along EV1


Torus emission along EV1



## Dissecting the $\mathrm{FWHM}_{\mathrm{Hb}}-\mathrm{R}(\mathrm{Fe})$ plane



## Dissecting the $\mathrm{FWHM}_{\mathrm{Hb}}-\mathrm{R}(\mathrm{Fe})$ plane



## Fell strength (Rfe) correlates with Eddington ratio

- Test using quasar clustering (SDSS quasars roughly have the same luminosity)


Peaks in a Gaussian random density field


## Orientation induces FWHM dispersion





Large symbols: the local RM AGN sample

Small symbols: low-z SDSS AGN from Shen et al. (2008)

Independent BH mass estimates from the M-sigma relation $f \equiv G M_{\mathrm{BH}} /\left(R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{H} \beta}^{2}\right)$


## A simple unification scheme for quasar phenomenology

- EV1 is an Eddington ratio sequence, where most quasar properties correlate with optical Fell strength
- Dispersion in FWHM_Hbeta at fixed Rfe largely due to orientation --- a flattened BLR geometry in the general quasar population
Implications: virial BH mass estimates based on FWHM_Hbeta should be treated with caution; a shallower dependence of virial BH mass (with a slope <2) on FWHM expected (Wang et al. 2009, Feng et al. 2014)


## Open questions

- How Eddington ratio changes emission line strengths (in particular Fell), torus emission, and X-ray properties?
- SED regulates photoionization
- Changes in accretion flow structure?
- Outflows?
- Nature of the Baldwin effect?
- Fainter AGNs (smaller BHs) will follow similar EV1 trends, but may have offsets in their physical properties


## Evidence for outflows?



Narrow [OIII] line blue wing


Broad Hbeta profile in the EV1 plane

