

## Orientation and optical spectral properties in a new sample of quasars

Jessie Runnoe

#### The Univ. of Texas at Austin, September 12, 2014



nui Shang PENNSYLVANIA SPACE GRANT CONSORTIUM

Collaborators: Todd Boroson Thanks to: Mike Brotherton, Mike Eracleous, Mike DiPompeo, Bev Wills, and Zhaohui Shang

## Motivation and goals



#### I. INTRODUCTION

Are core-dominated radio sources end-on extended doubles with their cores Doppler-boosted? The idea that they are has many attractive features and has been widely discussed in the literature (e.g., Scheuer and Readhead 1979; Blandford and Königl 1979). Consideration of the radio data alone shows that

## Motivation and goals



#### I. INTRODUCTION

Are core-dominated radio sources end-on extended doubles with their cores Doppler-boosted? The idea that they are has many attractive features and has been widely discussed in the literature (e.g., Scheuer and Readhead 1979; Blandford and Königl 1979). Consideration of the radio data alone shows that

## Motivation and goals



#### I. INTRODUCTION

Are core-dominated radio sources end-on extended doubles with their cores Doppler-boosted? The idea that they are has many attractive features and has been widely discussed in the literature (e.g., Scheuer and Readhead 1979; Blandford and Königl 1979). Consideration of the radio data alone shows that

 Our goal: define a set of objects for studying orientation effects whose properties are representative.

# Radio orientation indicators



#### Radio spectral index:

 $S_{v} \propto v^{\alpha}$ 

# Radio orientation indicators



#### Radio spectral index:

 $S_{v} \propto v^{\alpha}$ 

# Radio orientation indicators



#### Radio core dominance:

 $\log R = \log(L_{core}/L_{ext})$ 

## Sample selection

- SDSS DR7 quasar catalog
- 0.1 < z < 0.6
- Match to WENSS (325 MHz)
  - Core within 30"
  - Lobes within 1100" and:
    - Flux ratio of lobes < 2.
    - Within 30 degrees of being opposite each other.
- log L(325 MHz) > 26.0 W Hz<sup>-1</sup>
- Visual inspection (FIRST, NVSS, WENSS, SDSS).
- Complete sample of 156 objects.



# The RL SED sample

- Selected from 3CR to have similar extended radio luminosities.
- 0.16 < z < 1.4
- Had to substitute some bright objects for some faint ones.
- Blazars excluded from sample.
- Sample of 52 objects designed to isolate orientation effects.

Wills et al. (1995), Shang et al. (2011)



### Results



#### How does this compare?



#### How does this compare?



#### RL SED sample.

#### What's populating log R - FWHM(Hβ) space?



#### What's populating log R - FWHM(Hβ) space?



# "Floor" plot



#### FWHM $H\beta$

log R

### Composites



### Q1 Spectra



 $\log R > 0$ , FWHM(H $\beta$ ) < 6000 km s<sup>-1</sup>

#### Q2 Spectra



log R > 0, FWHM(H $\beta$ ) > 6000 km s<sup>-1</sup>

#### Q3 Spectra



 $\log R < 0$ , FWHM(H $\beta$ ) < 6000 km s<sup>-1</sup>

### Q4 Spectra



 $\log R < 0$ , FWHM(H $\beta$ ) > 6000 km s<sup>-1</sup>

### Radio morphologies

Flux

Density

(je



Flux Density J.

1 0  $^{-1}$ RA Offset (arcmin) 133 x 133 pixels extracted from FIRST image 13360+56415G Brightest pixel is 65.36 mJy/beam at X, Ý = 67, 67 pixels RA, Dec = 13 34 37.462 +56 31 48.65 (J2000) RMS noise 0.177 mJy



1 0 -1 RA Offset (arcmin) 133 x 133 pixels extracted from FIRST image 08270+52196F Brightest pixel is 145.24 mJy/beam at = 67, 67 pixels Х, Ү RA, Dec = 08 27 53.767 +52 17 58.04 (J2000) RMS noise 0.177 mJy



RA Offset (arcmin) 133 x 133 pixels extracted from FIRST image 09330+55553G Brightest pixel is 7.10 mJy/beam at

X, Y = 77, 18 pixels RA, Dec = 09 31 58.006 +55 32 19.96 (J2000) RMS noise 0.112 mJy



RMS noise 0.194 mJy



$$Y = 78.87$$
 pixels

RA, Dec = 08 53 39.436 +40 52 57.55 (J2000) RMS noise 0.194 mJy



133 x 133 pixels extracted from FIRST image 10150+48304F Brightest pixel is 103.32 mJy/beam at = 66, 97 pixels

X, Y RA, Dec = 10 15 57.874 +48 38 54.29 (J2000)

RMS noise 0.198 mJy

### Extended radio luminosity



- Why don't we find core-dominated, high Lext objects?
  - They're rare!

# Summary

- Complete sample of 156 DR7 SDSS quasars with 0.1 < z < 0.6 and log L(325 MHz) > 26 W Hz<sup>-1</sup>, including some with no radio cores.
- Objects are diverse in optical spectral properties and radio morphologies.
- Includes core-dominant population with broad FWHM(H $\beta$ ).
- Range in properties indicates importance of other physical parameters in addition to orientation.