Recent Results in Reverberation Mapping

Bradley M. Peterson, Gisella De Rosa, and Gerard A. Kriss

Current Themes in RM - Context -

- RM lags measured for ~ 50 sources
- Nearly all at low z, mostly Balmer lines, bias toward high Eddington ratio objects
- High-fidelity velocity-resolved results are finally beginning to emerge

Pancoast, Horne (this session)

Current Themes in RM

1) More efficient RM

- RM development necessarily carried out on small telescopes
- Brighter, low-z objects, laboriously observed
- To better characterize quasars, need to go to higher z
- Fainter objects, but higher surface density
- Multiobject spectroscopy, bigger telescopes
- Need to calibrate rest-UV lines to establish $R-L$
$R-L$ for C iv is probably an overstated concern. Microlensing provides independent confirmation Lawrence (this session)
- RM measurements, low ionization lines
- Microlensing,

Low-ionization lines
RM measurements, high-ionization lines

Microlensing, high-ionization lines

Guerras+ 2013, ApJ, 764:160

Current Themes in RM

2) "Better" RM

- Higher-quality data, better sampled, broader wavelength range
- Probe quasar structure in more detail
- Establish "ground truth" for lower-quality data
- Establish limitations for more suboptimal data "How much information is lost by using the optical continuum as a surrogate for the ionizing continuum?"

AGN Space Telescope and Optical Reverberation Mapping Program (AGN STORM)

- Anchored by daily HST COS observations of NGC 5548 (Cycle 21)
- 2014 February 2 through July 27
- 170/179 observations successful, single 2-day gap
- Spectra cover 1153 -1796 Å (Lya through He II 1640)
- Target selection:
- Luminosity suited to daily cadence and one HST cycle
- Obtain a high S / N COS spectrum in one orbit
- Well-characterized, "reliably" variable source
- Relatively weak absorption in resonance lines However, note Kriss talk (earlier today)

AGN STORM Supporting Observations

- SWIFT
- Hard/soft X-rays, NUV/optical photometry
- ~2 visits/day for 4 months (2/3 of HST program)
- Chandra
- 4 visits, one every 60 days
- Ground-based spectroscopy
>6 observatories, January through August
- Ground-based imaging
>12 observatories, NUV through NIR

AGN STORM Early Results

- Continuum window: gray band (1367 Å)
- Lya total flux in green
- Geocoronal lines and bad pixels masked
- Bad pixels "move," depending on placement of
 spectrum on detector

AGN STORM Early Results

AGN STORM Early Results

AGN STORM I - De Rosa et al., in prep.

AGN STORM Early Results

AGN STORM I - De Rosa et al., in prep.

AGN STORM - Early Results

AGN STORM I -

De Rosa et al., in prep.

AGN STORM - Early Results

AGN STORM I -
De Rosa et al., in prep.
Ly α - velocity binned results ($\sim 500 \mathrm{~km} \mathrm{~s}^{-1}$)

Long-Term Monitoring

- Long-term monitoring has revealed some interesting results:
- Fading of Mrk 590 by factor of ~ 100
- Seyfert $1 / 2$ or $2 / 1$ transitions seen in the past
- Event distinguished by time and wavelength coverage and magnitude of effect
- Narrow-line flux variability in NGC 5548
- On timescales of years, shorter than usually supposed
Kraemer knew something like this would happen!

Mrk 590: A Retired Seyfert 1?

Mrk 590 UV Variability

UV spectrum obtained with HST COS DD time.
Unambiguous detection of UV narrow lines in a (former?) Seyfert 1 spectrum.

Narrow Emission-Line Variability in

 NGC 5548

Peterson+ 2013 ApJ, 779:109

Narrow Emission-Line Variability in

 NGC 5548$\tau_{\text {smooth }}=\left(\frac{2 R_{\text {NLR }}}{c}\right)+\left(\frac{1}{n_{e} \alpha_{\mathrm{B}}}\right)$
Light-travel Recombination time timescale

- Size of narrow-line region constrained to $1-3 \mathrm{pc}$
- Density $\sim 10^{5} \mathrm{~cm}^{-3}$
- Second credible detection of [O III] variability (3C 390.3 by Zheng+ 1995),
 but first to measure $R_{\text {NLR }}$

Scanning the Sky with the All-Sky Automated Survey for Supernovae (ASAS-SN)

Four 14 cm telescopes.
$4.5^{\circ} \times 4.5^{\circ} \mathrm{FOV}$

NGC 2617

ASAS-SN AGN light curves

