

università degli studi FIRENZE

On the [OIII] Equivalent Width distribution and the structure of accretion disk and BLR

Alessandro Marconi

Department of Physics and Astronomy University of Florence

INAF-Arcetri Astrophysical Observatory, Florence

In collaboration with: S. Bisogni, G. Risaliti, M. Salvati

[OIII] EW as orientation indicator

Continuum emission from geometrically thin, optically thick accretion disk is expected to be *anisotropic*

 $\boldsymbol{L_{obs}} = L_0 \, \cos \theta$

[OIII] Line emission excited from AGN is expected to be *isotropic* (Mulchaey+1994; Heckman+2005) or mildly anysotropic (di Serego+97)

 $L_{[OIII],obs} = L_{[OIII]}$

 $EW_{[OIII],obs} = EW_{[OIII]} / \cos\theta$

Expected distribution of EW_[OIII]

$EW_{[OIII],obs} = EW_{[OIII]} / \cos \theta$ with no preferred line of sight

In the ideal world: can observe the entire population of AGN

 $EW_{[OIII]}$ $EW_{[OIII],oss}$

e.g., Netzer 1985, 1990

Expected distribution of EW_[OIII]

$EW_{[OIII],obs} = EW_{[OIII]} / \cos \theta$ with no preferred line of sight

In the real world: can observe a flux limited sample

 $EW_{[OIII]}$ $EW_{[OIII],oss}$

Risaliti, Salvati & Marconi 2011

Quasar sample

- \swarrow Quasar sample from SDSS DR7, EW_[OIII] measurements from Shen+2011
- \bigstar Selection criteria:
 - "uniform" sample (flux limited sample)
 z < 0.8 (include [OIII] 5007 line profile)
 average (S/N)_{pix} > 5
- Compare observed W[OIII] distribution with expected from L cos θ continuum anisotropy

EW[0III] vs EW of Broad Lines

 \approx EW distributions of Broad Lines do not show -3.5 power law tail

- L[OIII]/LBLR distribution has the same -3.5 power law tail as EW[OIII] distribution
- $\Rightarrow Broad lines Luminosities behave like continuum luminosities, i.e. <math>L_{BLR,obs} = L_{BLR} \cos \theta$

Broad Hβ, MgII, CIV are optically thick lines and BLR has a disk-like structure aligned with the accretion disk. (e.g. Wills & Brown 1986, Netzer 1987, Wills & Brotherton 1995, Goad & Wanders 1996, Smith+2005, Maiolino+2001, Jarvis & McLure 2006, Down+2010)

The presence of the Torus

The torus (or T.O.R.U.S.) prevents observing objects with

Observed distribution of EW[011]

NO "Torus cut" at high W[OIII] ($\theta_{max} > 85 deg$). Also sources close to edge on observed!

Inclination from [OIII] EW

It is possible to invert the distribution and use EW_[OIII] as inclination indicator (also Boroson+11)

Is the EW_[OIII] distribution driven by continuum obscuration (i.e. obscuration toward the AD/BLR)?

 \overleftrightarrow Are there evidences for geometrical projection effects in BLR lines?

 \cancel{x} Are there evidences for geometrical projection effects in NLR lines?

 \overleftrightarrow What about the obscuring torus and IR emission?

 $\stackrel{\scriptstyle }{\propto}$ Is there a physical interpretation for Eigenvector 1?

Average QSO spectra in EW bins

We are interested to average effects on the QSO population, not in intrinsic differences in a given $EW_{[OIII]}$ range ...

- 🙀 spectral stacking in EW bins
- entire sample of DR7 quasars
 to increase statistics (~12000)
 with EW[OIII] by Shen+11
- no significant differences in stacks by using only targets from uniform sample

EW[OIII] driven by continuum obscuration?

(xmll)gol

☆ also no change in AD spectrum …

Geometrical projection effects in BLR lines?

🙀 In high EW sources AD is expected to be seen edge on

- ☆ BLR is "disky" like AD
- ☆ BLR Line widths are expected to increase on average with EW[OIII]

Risaliti+11

A DECEMBER OF A

Geometrical projection effects in BLR lines?

A DECEMBER OF A

Geometrical projection effects in NLR lines?

- In high EW sources accretion disk is expected to be seen edge-on
- (OIII] is outflowing in ionisation cone (e.g. Fischer+13,14)
- (OIII) outflow velocity should on average decrease with EW (eg. Boroson 2011)

[OIII] velocity maps of z~2.5 QSOs showing conical outflows (Carniani+14)

Geometrical projection effects in NLR lines?

Geometrical projection effects in NLR lines?

[OIII] blue component velocity

IR emission and the obscuring torus?

Average MIR SED in bins of EW_[OIII] (normalized at 20 μm)

IR emission and the obscuring torus?

IR emission and the obscuring torus?

 \approx ~100 QSOs with SEDs from near-IR to far-IR

🙀 SED fitting and decomposition of AGN and host galaxy

Balmaverde+14

Eigenvector 1

At least part of the Eigenvector 1 (Boroson & Green 1992) could be ascribed to an inclination effect ...

see also Shen & Ho 14

- \Rightarrow EW[OIII] distribution indicates that Accretion Disk emission is any sotropic: $L = L_0 \cos \theta$, as expected
 - average spectra in EW[OIII] bins indicate L effect on EW[OIII] is not due to obscuration (i.e. high EW[OIII] sources are not obscured)
- W[OIII] can be used as an orientation indicator: low EW[OIII] face on AD, high EW[OIII] edge on AD,
 - [OIII] outflow velocity anticorrelated with EW[OIII]
- \Rightarrow EW_{BLR} distributions (CIV, MgII, H β) indicate that BLR is anysotropic like continuum, i.e. BLR is disk-like
 - Confirmed by strict correlation of average BLR line widths and W[OIII]
- Average color of MIR SED is correlated with EW[OIII] (i.e. edge on objects are redder, as expected from torus models)
- Possible interpretation of Eigenvector 1 (anticorrelation of FeII and OIII): inclination effect

Risaliti+11, Bisogni+14, stay tuned!