Why is the BLR emission similar in AGN at L=10^39-10^47?

or Radiation Pressure Confinement and the BLR

work done with Alexei Baskin and Jonathan Stern

Similar n_e and U distributions (or n_e, n_{ph})

Two interesting coincidences in the BLR

 $\label{eq:RBLR} R_{BLR} \sim R_{sub} \text{ - the dust sublimation radius} \\ P_{gas} \sim P_{rad} \ \text{ in the BLR}$

Davidson (1972) Greg Shields (1978) *Pittsburgh Conference on BL Lac Objects* But the relation were not quit valid. (because R_{BLR} was off by a factor of ~10)

Reverberation gave the correct R_{BLR} (late 80's), and then the above relations became valid. But by then the ideas were forgotten...

What sets n_{ph}?

Dust opacity - 10^{-21} per H Photoionized gas opacity - $10^{-23}/U$ per H \longrightarrow Dust dominates the absorption when U>10⁻²

Dust survives down to $R_{sub}=0.2L_{46}^{1/2}$ pc. Sets the outer BLR radius (Suganuma+06), for U>10⁻² gas

Dust survival in the accretion disk atmosphere may set the inner BLR radius (Hryniewicz & Czerny 11)

Explains the famous $R_{BLR}=0.1L_{46}^{1/2}$ RM result

Implies a <u>universal $n_{ph} \sim 3x10^9$ </u> cm⁻³ in the BLR

What sets n_e?

Radiation carries energy and momentum If the gas is not outflowing, P_{rad} must be balanced by P_{gas}

At the 0'th order level P_{rad}=P_{gas}

 $2n_ekT=n_{ph}<hnu>, n_{ph}/n_e=U=2kT/<hnu>$ $2kT\sim3eV, <hnu>\sim30eV$

—> <u>U=0.1</u> Independent of distance and luminosity

What is the structure of the absorbing layer?

$$dP_{gas}(r) = \frac{F_{rad}}{c} e^{-\tau(r)} d\tau \longrightarrow P_{gas}(r) = P_{rad}(1 - e^{-tau(r)}) + P_{gas}(r_i)$$

$$2kT_{\rm C}\frac{\mathrm{d}n_e(r)}{\mathrm{d}r} = \frac{F_{\rm rad}}{c}n_e\sigma_{\rm es}$$

$$n_e(r) = n_{e,i} \exp\left(\frac{r - r_i}{l_{pr}}\right)$$
 $l_{pr} = 2kT_{\rm C}c/F_{\rm rad}\sigma_{\rm es}$

Numerical solutions

Cloudy 10.00

Executed with the "constant pressure" command.

Stops when H⁺/total H = 1%. = 1%.

log n_i = 0-10 (n_i - density at the illuminated side).

olog L = 41.5-46.

Slab structure for L= 10^{45} & r=r_{BLR}= 10^{17} (n_Y~ 10^{9})

The structure is independent of n_{H,i}

Radiation Pressure Confinement - RPC

The maximal density

Ionization structure of a given RPC slab

r=r_{BLR}

large range in n => large range in U => both very high- and very lowionization ions **in the same slab**

Comparison to a constant-n slab RPC slab n=10^{10.5} (U=0.05)

Line EW from slabs at different r

 $\Omega_{BLR}=0.3$

Metallicity effect.

 $\Omega_{BLR}=0.3$

The observed range from Dietrich+02 (Ne VIII from Telfer+02). $\Omega_{BLR}=0.3$

As the ionization potential decreases, the average-emission radius increases.

Summary

Radiation Pressure Confinement is inevitable for a hydrostatic BLR.

explains universal U~0.1, independent of L=10³⁹-10⁴⁸ erg/s.

The predicts U~0.1, independent of r as well.

- \odot predicts $n \simeq 3 \times 10^{14} L_{46} r_{16}^{-2}$ at the neutral back side.
- In, U, and r are not independent parameters.
- predicts very high- and very low-ionization ions in the same BLR cloud.

predicts BLR stratification, without any additional assumptions.

The answer:

$$P_{rad} = aT^4{}_{sub} \sim 0.1 \text{ erg cm-3}$$

 $P_{gas} = P_{rad} \longrightarrow nT \sim 10^{15}$

X-ray warm absorbers measure the expected ionisation distribution

UV absorbers reveal a lower pressure in higher ionisation gas