Echo Mapping of Active Galactic Nuclei

Keith Horne: (SUPA St Andrews)

- Indirect imaging using light travel time delays and doppler shifts.
- Micro-arcsecond maps of accretion flows onto AGN black holes.
- Black Hole masses.
- Geometry, Kinematics, Ionisation structure of their Accretion Flows..

> "Model-independent" projection of the 6-D phase space, resolved on doppler shift V and time delay τ, for different emission lines.
$\Psi(\mathrm{V}, \tau)$

Echo Tomography: $f(\lambda, t)=>\Psi(V, \tau)$

Light travel time delay τ "slices up" the region on iso-delay paraboloids.

Velocity-Delay Maps $\Psi(\mathrm{V}, \tau)$

Simulation: Photo-ionised Keplerian disk with spiral density waves

velocity

$$
\tau=\frac{R}{c}(1+\sin i \cos \theta) \quad V=\sqrt{\frac{G M}{R}} \sin i \sin \theta \quad \text { Sky view: }
$$

Linearised Echo Model

Lightcurve model:
Continuum: $C(t)=C_{0}+\Delta C(t)$
Line: $L(t)=L_{0}+\int_{0}^{\tau_{\max }} \Psi(\tau) \Delta C(t-\tau) d \tau$

Tangent-curve approximation to non-linear responses of photo-ionised emission lines
to continuum variations.
Neglects curvature of $L(C)$
model parameters : $C(t), L_{0}, \Psi(\tau)$.

MEMECHO : Maximum Entropy Fits

$$
\begin{array}{rl}
\operatorname{Pr}(\text { Model I Data }) & \propto \exp \left\{-\chi^{2} / 2\right\} \exp \{\alpha S / 2\} \\
\chi^{2}=\sum_{i}^{\text {Ndat }}\left(\frac{D_{i}-\mu_{i}}{\sigma_{i}^{2}}\right)^{2} & S=\sum_{k}^{N D i x} p_{k}-q_{k}-p_{k} \ln \left(p_{k} / q_{k}\right)
\end{array}
$$

- 1. Fit the data $\alpha \Rightarrow 0$ 2. Keep it "simple". $\alpha \Rightarrow \infty$

$p_{k}>0 . S_{\text {max }}=0$, when $p_{k}=q_{k}$.
default values: e.g. $q_{k}=\left(p_{k-1} p_{k+1}\right)^{1 / 2}$

Problem: $\chi^{2}-\alpha S$ fails to control the lightcurve model in data gaps and extrapolation regions. Solution: 1: Use good data with good error bars.

2: Use prior info about AGN lightcurves.

Cure: Power Spectrum Prior

Lightcurve model: $\mu(t)=\sum_{k=1}^{K} C_{k} \cos \left(2 \pi \omega_{k} t\right)+S_{k} \sin \left(2 \pi \omega_{k} t\right)$
Gaussian priors on fourier amplitudes, power - law power spectrum:
$\operatorname{Prior}\left(C_{k}, S_{k}\right)=\frac{1}{2 \pi \sigma_{k}^{2}} \exp \left\{-\frac{C_{k}^{2}+S_{k}^{2}}{2 \sigma_{k}^{2}}\right\} \quad \sigma_{k}^{2}=\frac{\sigma_{0}^{2}}{1+\left(\omega_{k} / \omega_{0}\right)^{\alpha}}$
Parameters: $C_{k}, S_{k}, \quad \sigma_{0}^{2}, \omega_{0}, \alpha$

strong data
weak data

MCMC fit with Power-Spectrum Prior

MCMC fit explores the full range of parameters that fit the data.

Power-spectrum prior cures "flailing" in the data gaps.

Porameter correlations
$\mathrm{a}_{0}=0.078 \quad a=2.687 \omega_{0}=0.088$

Frequancy (cyclea/doy)

Parometers - 171 Neff - 170.2

MCMC: Parameter Co-Variances

Power Spectrum Prior:

$$
\sigma^{2}(\omega)=\frac{\sigma_{0}^{2}}{1+\left(\omega_{, /} / \omega_{0,}\right)^{\alpha}}
$$

3 parameters: $\sigma_{0}, \omega_{0}, \alpha$

MCMC: log-normal delay maps of Arp 151 (complete with error envelopes !)

Test of Virial Gas Motions

$\log [$ delay τ (days)]

Velocity-Delay Maps $\Psi(\mathrm{V}, \tau)$

Simulation: Photo-ionised Keplerian disk with spiral density waves

velocity

$$
\tau=\frac{R}{c}(1+\sin i \cos \theta) \quad V=\sqrt{\frac{G M}{R}} \sin i \sin \theta \quad \text { Sky view: }
$$

$$
\begin{aligned}
& C(t)=C_{0}+\Delta C(t) \\
& f(\lambda, t)=f_{0}(\lambda, t)+\int_{0}^{\tau_{\max }} \Psi(\lambda, \tau) \Delta C(t-\tau) d \tau
\end{aligned}
$$

Bentz, et al. 2010

Arp 151 Maps: $\Psi(\mathrm{v}, \tau)$

MEMECHO fits to 2008 LAMP data

Virial envelope $V \sim \tau^{-1 / 2}$
Balmer lines stratified.

Hel and Hell
Barely resolved in τ

Prompt response on red wing. (disk, far side enhanced, inflow)

Mrk 50 : 2011 LAMP data

Mean and RMS spectra

MEMECHO fit of $\Psi(\tau)$
$H \beta$ vs continuum
$\tau \sim 10 \mathrm{~d}$

Mrk 50: Velocity-Delay Maps
 MEMECHO fits of $\Psi(\lambda, \tau)$ to 20 I I LAMP data

Does Hell precede the continuum?

STORM campaign on NGC 5548

velocity

Delay resolution limited by S / \mathbf{N}, cadence, duration, systematic errors. Better time sampling => sharper maps.

Sky view:

HST/COS 180 epochs at Id sampling.
SWIFT 8hr sampling.
Ground-based photometry and spectroscopy.

RGB=L α, CIV , HeII

MEMECHO recovery of $\Psi(\mathrm{V}, \tau)$ maps from simulated HST/COS data

$R G B=L \alpha, C I V, H e I I$

Velocity-Delay Map

velocity
Sky

Prelim analysis of 5548 HST data

- No delay maps yet $: 8$
- Absorption lines complicating the analysis.
- PrepSpec fits a simple separable model:

$$
F(\lambda, t)=\operatorname{avg}(\lambda)+\operatorname{cont}(\lambda, t)+\operatorname{BLR}(\lambda) \operatorname{BLR}(t)
$$

- Mean spectrum $\operatorname{avg}(\lambda)$
- Continuum lightcurves cont(λ, t)
- BLR lightcurves BLR(t)
- Variable BLR velocity profiles BLR($\boldsymbol{\lambda})$
- Residuals show subtle features (not yet analysed).

GI60M

BLR Spectrum

(data-model))sigma

wavelength (\AA) $z=0.01718$

BLR Lightcurve

Scale Shift Blur Corrections

GI30M

BLR Spectrum

(data-model))sigma

4494×163

Residual Spectra $\mu=0.025(128) \chi=0.97(46)$

BLR Lightcurve

Scale Shift Blur Corrections

CIV variations complicated

$$
\text { NGC } 5548 \text { HST }
$$

- Fast (5-20d) variations correlate, with clear (5-10d) lags.
- Slow (I00d) variations may anti-correlate.
- Linerarised echo model may be inadequate.
- Negative CIV response on IOOd timescales?

N5548 Photometric Lightcurves

Swift lightcurves

Liverpool 2 m robotic telescope ugriz lightcurves

SWIFT lags (Edelson et al. in prep)

Swift lightcurves

Swift CCF vs 212 nm

Summary

- Analysis techniques well developed
- Datasets now support velocity-delay mapping.
- 5548 HST, Swift, rich datasets under analysis.
- Future:
- Robotic telescopes (LCOGT) deliver photometry.
- IFU spectrographs (better control of systematics)
- SDSS-RM 800 AGN in parallel.

